Answer: 17
Step-by-step explanation:
78 x 9
=702
702 -719
= 17
Answer:
100 miles
follow the line up from 5
Answer:
see explanation
Step-by-step explanation:
(a)
Given
2k - 6k² + 4k³ ← factor out 2k from each term
= 2k(1 - 3k + 2k²)
To factor the quadratic
Consider the factors of the product of the constant term ( 1) and the coefficient of the k² term (+ 2) which sum to give the coefficient of the k- term (- 3)
The factors are - 1 and - 2
Use these factors to split the k- term
1 - k - 2k + 2k² ( factor the first/second and third/fourth terms )
1(1 - k) - 2k(1 - k) ← factor out (1 - k) from each term
= (1 - k)(1 - 2k)
1 - 3k + 2k² = (1 - k)(1 - 2k) and
2k - 6k² + 4k³ = 2k(1 - k)(1 - 2k)
(b)
Given
2ax - 4ay + 3bx - 6by ( factor the first/second and third/fourth terms )
= 2a(x - 2y) + 3b(x - 2y) ← factor out (x - 2y) from each term
= (x - 2y)(2a + 3b)
The answer is C 7
Hope this helps
Answer:
Step-by-step explanation:
From the given information:
r = 10 cos( θ)
r = 5
We are to find the the area of the region that lies inside the first curve and outside the second curve.
The first thing we need to do is to determine the intersection of the points in these two curves.
To do that :
let equate the two parameters together
So;
10 cos( θ) = 5
cos( θ) = 

Now, the area of the region that lies inside the first curve and outside the second curve can be determined by finding the integral . i.e









The diagrammatic expression showing the area of the region that lies inside the first curve and outside the second curve can be seen in the attached file below.