Mass of H₂ needed to react with O₂ : 1.092 g
<h3>Further explanation</h3>
The concentration of a substance can be expressed in several quantities such as moles, percent (%) weight / volume,), molarity, molality, parts per million (ppm) or mole fraction. The concentration shows the amount of solute in a unit of the amount of solvent.
Reaction
O₂(g) + 2H₂(g) → 2H₂O(g)
mass of O₂ : 8.75 g
mol O₂(MW=32 g/mol) :

From the equation, mol ratio of O₂ : H₂ = 1 : 2, so mol H₂ :

Mass H₂ (MW=2 g/mol) :

Combustion is a chemical reaction between a fuel and an oxidant, oxygen, to give off combustion products and heat. Complete combustion results when all of the fuel is consumed to form carbon dioxide and water, as in the case of a hydrocarbon fuel. Incomplete combustion results when insufficient oxygen reacts with the fuel, forming soot and carbon monoxide.
The complete combustion of propane proceeds through the following reaction:

+

-->

+

Combustion is an exothermic reaction, which means that it gives off heat as the reaction proceeds. For the complete combustion of propane, the heat of combustion is (-)2220 kJ/mole, where the minus sign indicates that the reaction is exothermic.
The molar mass of propane is 44.1 grams/mole. Using this value, the number of moles propane to be burned can be determined from the mass of propane given. Afterwards, this number of moles is multiplied by the heat of combustion to give the total heat produced from the reaction of the given mass of propane.
14.50 kg propane x <u> 1000 g </u> x <u> 1 mole propane </u> x <u> 2220 kJ </u>
1 kg 44.1 g 1 mole
=
729,931.97 kJ
Answer:
Rb+
Explanation:
Since they are telling us that the equivalence point was reached after 17.0 mL of 2.5 M HCl were added , we can calculate the number of moles of HCl which neutralized our unknown hydroxide.
Now all the choices for the metal cation are monovalent, therefore the general formula for our unknown is XOH and we know the reaction is 1 equivalent acid to 1 equivalent base. Thus we have the number of moles, n, of XOH and from the relation n = M/MW we can calculate the molecular weight of XOH.
Thus our calculations are:
V = 17.0 mL x 1 L / 1000 mL = 0.017 L
2.5 M HCl x 0.017 L = 2.5 mol/ L x 0.017 L = 0.0425 mol
0.0425 mol = 4.36 g/ MW XOH
MW of XOH = (atomic weight of X + 16 + 1)
so solving the above equation we get:
0.0425 = 4.36 / (X + 17 )
0.7225 +0.0425X = 4.36
0.0425X = 4.36 -0.7225 = 3.6375
X = 3.6375/0.0425 = 85.59
The unknown alkali is Rb which has an atomic weight of 85.47 g/mol
Answer:
= 9.28 g CO₂
Explanation:
First write a balanced equation:
CH₄ + 2O₂ -> 2H₂O + CO₂
Convert the information to moles
7.50g CH₄ = 0.46875 mol CH₄
13.5g O₂ = 0.421875 mol O₂
Theoretical molar ratio CH₄:O₂ -> 1:2
Actual ratio is 0.46875 : 0.421875 ≈ 1:1
If all CH₄ is used up, there would need to be more O₂
So O₂ is the limiting reactant and we use this in our equation
Use molar ratio to find moles of CO₂
0.421875 mol O₂ * 1 mol CO₂/2 mol O₂=0.2109375 mol CO₂
Then convert to grams
0.2109375 mol CO₂ = 9.28114 g CO₂
round to 3 sig figs
= 9.28 g CO₂
The IUPAC name of NO is nitric oxide. It is one of the many oxides of nitrogen. It is a colorless gas under standard temperature and pressure. It found great application in the combustion of fossil fuels in power plants. This substance is produced naturally by lightning.