1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shusha [124]
3 years ago
5

A student is building an electrical circuit. Which material should she choose for wires, and why.

Chemistry
1 answer:
r-ruslan [8.4K]3 years ago
3 0

D. A metal such as copper, because its atom have very mobile electrons         - A-p-e-x verified!

<u>Have a Great Day!</u>

You might be interested in
The concentration of a saturated BaCl2 solution is 1.75 M (mol/liter) and the concentration of a saturated Na2SO4 solution is 2.
Kitty [74]

Answer:

a) The theoretical yield is 408.45g of BaSO_{4}

b) Percent yield = \frac{realyield}{408.45g}*100

Explanation:

1. First determine the numer of moles of BaCl_{2} and Na_{2}SO_{4}.

Molarity is expressed as:

M=\frac{molessolute}{Lsolution}

- For the BaCl_{2}

M=\frac{1.75molesBaCl_{2}}{1Lsolution}

Therefore there are 1.75 moles of BaCl_{2}

- For the Na_{2}SO_{4}

M=\frac{2.0moles[tex]Na_{2}SO_{4}}{1Lsolution}[/tex]

Therefore there are 2.0 moles of Na_{2}SO_{4}

2. Write the balanced chemical equation for the synthesis of the barium white pigment, BaSO_{4}:

BaCl_{2}+Na_{2}SO_{4}=BaSO_{4}+2NaCl

3. Determine the limiting reagent.

To determine the limiting reagent divide the number of moles by the stoichiometric coefficient of each compound:

- For the BaCl_{2}:

\frac{1.75}{1}=1.75

- For the Na_{2}SO_{4}:

\frac{2.0}{1}=2.0

As the BaCl_{2} is the smalles quantity, this is the limiting reagent.

4. Calculate the mass in grams of the barium white pigment produced from the limiting reagent.

1.75molesBaCl_{2}*\frac{1molBaSO_{4}}{1molBaCl_{2}}*\frac{233.4gBaSO_{4}}{1molBaSO_{4}}=408.45gBaSO_{4}

5. The percent yield for your synthesis of the barium white pigment will be calculated using the following equation:

Percent yield = \frac{realyield}{theoreticalyield}*100

Percent yield = \frac{realyield}{408.45g}*100

The real yield is the quantity of barium white pigment you obtained in the laboratory.

7 0
3 years ago
What is 5 divided by 2.7​
Strike441 [17]
5 divided by 2.7 is 0.54
3 0
2 years ago
Which value of x from the set {4, 5, 6, 7), makes this equation true?
irina [24]
C and d is the answer
3 0
3 years ago
Read 2 more answers
12a. How does the model of the volcano provide evidence for the cycling of Earth materials through the rock cycle?
Bond [772]

Answer:

lava is coming from the crust

Explanation:

volcano's explode with lava because the crust pushes it out

6 0
2 years ago
What must be the molarity of an aqueous solution of trimethylamine, (ch3)3n, if it has a ph = 11.20? (ch3)3n+h2o⇌(ch3)3nh++oh−kb
Stolb23 [73]

0.040 mol / dm³. (2 sig. fig.)

<h3>Explanation</h3>

(\text{CH}_3)_3\text{N} in this question acts as a weak base. As seen in the equation in the question, (\text{CH}_3)_3\text{N} produces \text{OH}^{-} rather than \text{H}^{+} when it dissolves in water. The concentration of \text{OH}^{-} will likely be more useful than that of \text{H}^{+} for the calculations here.

Finding the value of [\text{OH}^{-}] from pH:

Assume that \text{pK}_w = 14,

\begin{array}{ll}\text{pOH} = \text{pK}_w - \text{pH} \\ \phantom{\text{pOH}} = 14 - 11.20 &\text{True only under room temperature where }\text{pK}_w = 14 \\\phantom{\text{pOH}}= 2.80\end{array}.

[\text{OH}^{-}] =10^{-\text{pOH}} =10^{-2.80} = 1.59\;\text{mol}\cdot\text{dm}^{-3}.

Solve for [(\text{CH}_3)_3\text{N}]_\text{initial}:

\dfrac{[\text{OH}^{-}]_\text{equilibrium}\cdot[(\text{CH}_3)_3\text{NH}^{+}]_\text{equilibrium}}{[(\text{CH}_3)_3\text{N}]_\text{equilibrium}} = \text{K}_b = 1.58\times 10^{-3}

Note that water isn't part of this expression.

The value of Kb is quite small. The change in (\text{CH}_3)_3\text{N} is nearly negligible once it dissolves. In other words,

[(\text{CH}_3)_3\text{N}]_\text{initial} = [(\text{CH}_3)_3\text{N}]_\text{final}.

Also, for each mole of \text{OH}^{-} produced, one mole of (\text{CH}_3)_3\text{NH}^{+} was also produced. The solution started with a small amount of either species. As a result,

[(\text{CH}_3)_3\text{NH}^{+}] = [\text{OH}^{-}] = 10^{-2.80} = 1.58\times 10^{-3}\;\text{mol}\cdot\text{dm}^{-3}.

\dfrac{[\text{OH}^{-}]_\text{equilibrium}\cdot[(\text{CH}_3)_3\text{NH}^{+}]_\text{equilibrium}}{[(\text{CH}_3)_3\text{N}]_\textbf{initial}} = \text{K}_b = 1.58\times 10^{-3},

[(\text{CH}_3)_3\text{N}]_\textbf{initial} =\dfrac{[\text{OH}^{-}]_\text{equilibrium}\cdot[(\text{CH}_3)_3\text{NH}^{+}]_\text{equilibrium}}{\text{K}_b},

[(\text{CH}_3)_3\text{N}]_\text{initial} =\dfrac{(1.58\times10^{-3})^{2}}{6.3\times10^{-5}} = 0.040\;\text{mol}\cdot\text{dm}^{-3}.

8 0
3 years ago
Other questions:
  • Why does the daylight increase when it get closer to summer
    11·2 answers
  • What is the relationship between humidity and air pressure
    13·2 answers
  • Define the term ionization energy. Choose one:
    11·1 answer
  • What do you chemically call water???
    13·2 answers
  • A piece of gold with a mass of 15.23g and an initial temp of 53 Celsius was dropped into a calorimeter containing 28g of water,
    5·1 answer
  • Chlorine forms a number of oxides with the following oxidation numbers: 1, 3, 4, 6, and 7. These compounds are stable and neutra
    12·1 answer
  • I don’t understand it plz help
    11·1 answer
  • What is the formula of the compound vanadium (V) oxide? Use the list of polyatomic ions and the periodic table to help you answe
    13·2 answers
  • Can you guys help me? Thanks again
    15·1 answer
  • A solution has a hydrogen ion concentration of [H+] = 4.6 x 10 -3 M.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!