Answer:
To find out what water is made of, it helps to look at its chemical formula, which is H2O. This basically tells us that the water molecule is composed of two elements: hydrogen and oxygen or, more precisely, two hydrogen atoms (H2) and one oxygen atom (O). Hydrogen and oxygen are gases at room temperature.
Explanation:
Alright! Here are the answers:
1. C. Fluorine is more reactive than nitrogen because fluorine needs only one electron to fill its outermost shell.
2. Aluminum (Al)
Answer is: <span>de Broglie wavelength of a proton is </span>3,4·10⁻⁵ nm.
v(proton) = 0,038 · 3·10⁸ m/s.
v(proton) = 1,14·10⁷ m/s; speed of proton.
m(proton) = 1,67·10⁻²⁷ kg.
h = 6,62607004·10⁻³⁴ m²·kg/s; Planck constant.
λ(proton) = h / m(proton) · v(proton).
λ(proton) = 6,62607004·10⁻³⁴ m²·kg/s ÷ (1,67·10⁻²⁷ kg · 1,14·10⁷ m/s).
λ(proton) = 3,48·10⁻¹⁴ m · 10⁹ nm/m = 3,4·10⁻⁵ nm.
Answer: Option (a) is the correct answer.
Explanation:
Ionic salts are defined as the salts which tend to contain ionic bonds as there occurs transfer of electrons between its combining atoms.
So, when an ionic salt melts or it is dissolved in water then it will dissociate into its respective ions and as electricity is the flow of electrons or ions. Hence, this salt is then able to conduct electricity.
As covalent compounds are insoluble in water so, they do no dissociate into ions. Hence, they do not conduct electricity.
Similarly, metallic and network solids do not dissociate into ions either when melted or dissolved in water. Therefore, they also do not conduct electricity.
Thus, we can conclude that when a white crystalline salt conducts electricity when it is melted and when it dissolves in water then this bond is of ionic type.
Copper heat capacity would be <span>0.385J/C*gram which means it needs 0.385 Joule of energy to increase 1 gram of copper temperature by 1 Celcius. The calculation would be:
energy= heat capacity *mass * temperature difference
energy= </span>0.385J/C*gram * 6g * (90-20)
<span>energy= 161.7J
</span>