1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
just olya [345]
2 years ago
6

A Herbig-Haro (HH) object is:_:_________.

Chemistry
1 answer:
Phoenix [80]2 years ago
5 0

Given what we know about Herbig-Haro (HH) objects, we can confirm that they are born from the collision between a jet from a star and clouds of interstellar matter.

<h3>What are Herbig-Haro (HH) objects?</h3>
  • To put it simply, a Herbig-Haro (HH) object is what we observe as a bright spot in distant space. Upon closer observation we can observe that these giant bright patches are not lone objects, but in fact immense groups of interstellar matter.

<h3>How Herbig-Haro (HH) objects are formed.</h3>
  • The formation of one of these interstellar groups requires an <em><u>immense amount of energy</u></em>. This energy come from the speed at which the materials that form these objects collide.
  • As stated in the question, the jet released from a star in the process of being born <em><u>smashes into a giant cloud of </u></em><em><u>dust </u></em><em><u>and </u></em><em><u>interstellar material </u></em><em><u>to form the </u></em><em><u>Herbig</u></em><em><u>-</u></em><em><u>Haro </u></em><em><u>(HH) </u></em><em><u>objects</u></em>.
  • This collision happens at hundreds of km/s. To put it into perspective, it would be roughly 500,000 miles per hour.

Therefore, we can confirm that option b, which states, "<em>where a jet from a </em><em>star </em><em>in the process of being born </em><em>collides </em><em>with (and lights up) a nearby cloud of </em><em>interstellar matter</em>", is the correct choice for the question pertaining to Herbig-Haro (HH) objects.

To learn more about interstellar space visit:

brainly.com/question/7106246

You might be interested in
Consider the titration of a 20.0-mL sample of 0.105 M HC2H3O2 with 0.125 M NaOH. Determine each quantity. a. the initial pH b. t
Oksi-84 [34.3K]

Answer:

Explanation:

Given that:

Concentration of HC_2H_3O_2 \  (M_1) = 0.105 M

Volume of  HC_2H_3O_2 \  (V_1) = 20.0 mL

Concentration of NaOH (M_2) = 0.125 M

The  chemical reaction can be expressed as:

HC_2H_3O_2_{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O_{(l)}

Using the ICE Table to determine the equilibrium concentrations.

          HC_2 H_3 O_2 _{(aq)} + H_2O _{(l) } \to C_2 H_3O_2^- _{(aq)} + H_3O^+_{ (aq)}

I            0.105                                     0                  0

C              -x                                         +x                +x

E            0.105 - x                                  x                  x

K_a = \dfrac{[C_2H_5O^-_2][H_3O^+]}{[HC_2H_3O_2]}

K_a = \dfrac{(x)(x)}{(0.105-x)}

Recall that the ka for HC_2H_3O_2= 1.8 \times 10^{-5}

Then;

1.8 \times 10^{-5} = \dfrac{(x)(x)}{(0.105 -x)}

1.8 \times 10^{-5} = \dfrac{x^2}{(0.105 -x)}

By solving the above mathematical expression;

x = 0.00137 M

H_3O^+ = x = 0.00137  \ M \\ \\  pH = - log [H_3O^+]  \\ \\  pH = - log ( 0.00137 )

pH = 2.86

Hence, the initial pH = 2.86

b)  To determine the volume of the added base needed to reach the equivalence point by using the formula:

M_1 V_1 = M_2 V_2

V_2= \dfrac{M_1V_1}{M_2}

V_2= \dfrac{0.105 \ M \times 20.0 \ mL }{0.125 \ M}

V_2 = 16.8 mL

Thus, the volume of the added base needed to reach the equivalence point = 16.8 mL

c) when pH of 5.0 mL of the base is added.

The Initial moles of HC_2H_3O_2 = molarity × volume

= 0.105  \ M \times 20.0 \times 10^{-3} \ L

= 2.1 \times 10^{-3}

number of moles of 5.0 NaOH = molarity × volume

number of moles of 5.0 NaOH = 0.625 \times 10^{-3}

After reacting with 5.0 mL NaOH, the number of moles is as follows:

                    HC_2 H_3 O_2 _{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O{ (l)}

Initial moles   2.1*10^{-3}       0.625 * 10^{-3}           0                      0

F(moles) (2.1*10^{-3} - 0.625 \times 10^{-3})    0      0.625 \times 10^{-3}         0.625 \times 10^{-3}

The pH of the solution is then calculated as follows:

pH = pKa + log \dfrac{[base]} {[acid]}

Recall that:

pKa for HC_2H_3O_2=4.74

Then; we replace the concentration with the number of moles since the volume of acid and base are equal

∴

pH = 4.74 + log \dfrac{0.625 \times 10^{-3}}{1.475 \times 10^{-3}}

pH = 4.37

Thus, the pH of the solution after the addition of 5.0 mL of NaOH = 4.37

d)

We need to understand that the pH at 1/2 of the equivalence point is equal to the concentration of the base and the acid.

Therefore;

pH = pKa = 4.74

e) pH at the equivalence point.

Here, the pH of the solution is the result of the reaction in the (C_2H_3O^-_2) with H_2O

The total volume(V) of the solution = V(acid) + V(of the base added to reach equivalence point)

The total volume(V) of the solution = 20.0 mL + 16.8 mL

The total volume(V) of the solution = 36.8 mL

Concentration of (C_2H_3O^-_2) = moles/volume

= \dfrac{2.1 \times 10^{-3} \ moles}{0.0368 \ L}

= 0.0571 M

Now, using the ICE table to determine the concentration of H_3O^+;

             C_2H_5O^-_2 _{(aq)} + H_2O_{(l)} \to HC_2H_3O_2_{(aq)} + OH^-_{(aq)}

I              0.0571                                0                      0

C              -x                                       +x                     +x

E             0.0571 - x                             x                       x

Recall that the Ka for HC_2H_3O_2 = 1.8 \times 10^{-5}

K_b = \dfrac{K_w}{K_a} = \dfrac{1.0\times 10^{-14}}{1.8 \times 10^{-5} }  \\ \\ K_b = 5.6 \times 10^{-10}

k_b = \dfrac{[ HC_2H_3O_2] [OH^-]}{[C_2H_3O^-_2]}

5.6 \times 10^{-10} = \dfrac{x *x }{0.0571 -x}

x = [OH^-] = 5.6 \times 10^{-6} \ M

[H_3O^+] = \dfrac{1.0 \times 10^{-14} }{5.6 \times 10^{-6} }

[H_3O^+] =1.77 \times 10^{-9}

pH =-log  [H_3O^+]   \\ \\  pH =-log (1.77 \times 10^{-9}) \\ \\ \mathbf{pH = 8.75 }

Hence, the pH of the solution at equivalence point = 8.75

f) The pH after 5.09 mL base is added beyond (E) point.

             HC_2 H_3 O_2 _{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O{ (l)}

Before                             0.0021              0.002725         0

After                                   0                     0.000625        0.0021

[OH^-] = \dfrac{0.000625 \ moles}{(0.02 + 0.0218 )  \ L}

[OH^-] = \dfrac{0.000625 \ moles}{0.0418 \ L}

[OH^-] =  0.0149 \ M

From above; we can determine the concentration of H_3O^+ by using the following method:

[H_3O^+] = \dfrac{1.0 \times 10^{-14} }{0.0149}

[H_3O^+] = 6.7 \times 10^{-13}

pH = - log [H_3O^+]

pH = -log (6.7 \times 10^{-13} )

pH = 12.17

Finally, the pH of the solution after adding 5.0 mL of NaOH beyond (E) point = 12.17

3 0
3 years ago
How many molecules are in 69 grams of Na?
12345 [234]
Molar mass Na = 23.0 g/mol

1 mol ---- 23.0 g
n mol ---- 69 g

n = 69 / 23.0

n = 3.0 moles

1 mole -------- 6.02x10²³ molecules
3.0 moles ---- ?

3.0 *  6.02x10²³ / 1

= 1.806x10²⁴ molecules

hope this helps!




7 0
3 years ago
Calculate the molar concentration of the Br⁻ ions in 0.065 M MgBr2(aq).
steposvetlana [31]
MgBr2(aq) is an ionic compound which will have the releasing of 2 Br⁻ ions ions in water for every molecule of MgBr2 that dissolves.
MgBr2(s) --> Mg+(aq) + 2 Br⁻(aq)
            [Br⁻] = 0.065 mol MgBr2/1L × 2 mol Br⁻ / 1 mol MgBr2 = 0.13 M
The answer to this question is [Br⁻] = 0.13 M
4 0
3 years ago
An example of a disaccharide is saccharin-aspartame molecule True False
Flura [38]
I think is False! Because it is not example of a disaccharide it is not saccharin-aspartame molecule.
6 0
3 years ago
or a particular isomer of C 8 H 18 , the combustion reaction produces 5104.1 kJ of heat per mole of C 8 H 18 ( g ) consumed, und
beks73 [17]

Answer:

The standard enthalpy of formation of this isomer of C_{8}H_{18} is -220.1 kJ/mol.

Explanation:

The given chemical reaction is as follows.

C_{8}H_{18}(g)+ \frac{25}{2}O_{2}(g) \rightarrow 8CO_{2}(g)+9H_{2}O(g)

\Delta H^{o}_{rxn}= -5104.1kJ/mol

The expression for the entropy change for the reaction is as follows.

\Delta H^{o}_{rxn}=[8\Delta H^{o}_{f}(CO_{2}) +9\Delta H^{o}_{f}(H_{2}O)]-[\Delta H^{o}_{f}(C_{8}H_{18})+ \frac{25}{2}\Delta H^{o}_{f}(O_{2})]

\Delta H^{o}_{f}(H_{2}O)= -241.8kJ/mol

\Delta H^{o}_{f}(CO_{2})= -393.5kJ/mol

\Delta H^{o}_{f}(O_{2})= 0kJ/mol

Substitute the all values in the entropy change expression.

-5104.1kJ/mol=[8(-393.5)+9(-241.8)kJ/mol]-[\Delta H^{o}_{f}(C_{8}H_{18})+ \frac{25}{2}(0)kJ/mol]

-5104.1kJ/mol=-5324.2kJ/mol -\Delta H^{o}_{f}(C_{8}H_{18})

\Delta H^{o}_{f}(C_{8}H_{18}) =-5324.2kJ/mol +5104.1kJ/mol

=-220.1kJ/mol

Therefore, The standard enthalpy of formation of this isomer of C_{8}H_{18} is -220.1 kJ/mol.

4 0
3 years ago
Other questions:
  • How many degrees is the earth tilted on its axis
    10·2 answers
  • What is the difference between an element and a compound?
    9·2 answers
  • How do we exist? What does scientific evidence suggest about the start of the universe?
    14·1 answer
  • Which of the following temperature is the coldest:
    8·2 answers
  • Use the Rydberg Equation to calculate the energy in Joules of the transition between n = 7 and n = 3 for the hydrogen atom. Find
    7·1 answer
  • Are Elements on the Period Table of Elements?<br> Yes or No?
    14·2 answers
  • Why do you think season will impact the size of a rabbit population​
    6·1 answer
  • New Account add me n free po. ints
    15·1 answer
  • How many moles of oxygen are in 2.00 moles of NaCIO4?​
    14·1 answer
  • THIS IS SCIENCE If you answer this please make two sides or list which go on each one whether it is Terrestrial or Jovian. I wil
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!