Answer:
12870ways
Step-by-step explanation:
Combination has to do with selection
Total members in a tennis club = 15
number of men = 8
number of women = 7
Number of team consisting of women will be expressed as 15C7
15C7 = 15!/(15-7)!7!
15C7 = 15!/8!7!
15C7 = 15*14*13*12*11*10*9*8!/8!7!
15C7 = 15*14*13*12*11*10*9/7 * 6 * 5 * 4 * 3 * 2
15C7 = 15*14*13*12*11/56
15C7 = 6,435 ways
Number of team consisting of men will be expressed as 15C8
15C8 = 15!/8!7!
15C8 = 15*14*13*12*11*10*9*8!/8!7!
15C8 = 15*14*13*12*11*10*9/7 * 6 * 5 * 4 * 3 * 2
15C8 = 6,435 ways
Adding both
Total ways = 6,435 ways + 6,435 ways
Total ways = 12870ways
Hence the required number of ways is 12870ways
5x + 13 Hope this helps you
50 hours cause you take 150 divided it by 3
Replace x with π/2 - x to get the equivalent integral

but the integrand is even, so this is really just

Substitute x = 1/2 arccot(u/2), which transforms the integral to

There are lots of ways to compute this. What I did was to consider the complex contour integral

where γ is a semicircle in the complex plane with its diameter joining (-R, 0) and (R, 0) on the real axis. A bound for the integral over the arc of the circle is estimated to be

which vanishes as R goes to ∞. Then by the residue theorem, we have in the limit

and it follows that
