Answer:
Balancing chemical equation means making a number of atoms or molecules equal on both sides. In other words, this means that the number of atoms and molecules of each reacting element needs to be the same as the number of atoms and molecules of those elements in the product.
Our reaction is:
AlBr3 + K2SO4 -> KBr + Al2(SO4)3
and we need to balance it.
Since there are 3 molecules of SO4 in the product we need to put 3 before the reactant K2SO4. There are also 2 atoms of Al in the product, so we need to put 2 in front AlBr3. Now we have 6 atoms of K and Br on the left side, so we need to put 6 in front of KBr in the product.
So, our balanced equation will look like this:
2AlBr3 + 3K2SO4 -> 6KBr + Al2(SO4)3
28.01 g/mol
hope that helped
dish Soap,Corn Syrup,Rubbing Alcohol, Milk,
Answer:
B. 1.65 L
Explanation:
Step 1: Write the balanced equation
2 SO₂(g) + O₂(g) ⇒ 2 SO₃(g)
Step 2: Calculate the moles of SO₂
The pressure of the gas is 1.20 atm and the temperature 25 °C (298 K). We can calculate the moles using the ideal gas equation.
P × V = n × R × T
n = P × V / R × T
n = 1.20 atm × 1.50 L / (0.0821 atm.L/mol.K) × 298 K = 0.0736 mol
Step 3: Calculate the moles of SO₃ produced
0.0736 mol SO₂ × 2 mol SO₃/2 mol SO₂ = 0.0736 mol SO₃
Step 4: Calculate the volume occupied by 0.0736 moles of SO₃ at STP
At STP, 1 mole of an ideal gas occupies 22.4 L.
0.0736 mol × 22.4 L/1 mol = 1.65 L