Answer:
2. 181.25 K.
3. 0.04 atm.
Explanation:
2. Determination of the temperature.
Number of mole (n) = 2.1 moles
Pressure (P) = 1.25 atm
Volume (V) = 25 L
Gas constant (R) = 0.0821 atm.L/Kmol
Temperature (T) =?
The temperature can be obtained by using the ideal gas equation as illustrated below:
PV = nRT
1.25 × 25 = 2.1 × 0.0821 × T
31.25 = 0.17241 × T
Divide both side by 0.17241
T = 31.25 / 0.17241
T = 181.25 K
Thus, the temperature is 181.25 K.
3. Determination of the pressure.
Number of mole (n) = 10 moles
Volume (V) = 5000 L
Temperature (T) = –10 °C = –10 °C + 273 = 263 K
Gas constant (R) = 0.0821 atm.L/Kmol
Pressure (P) =?
The pressure can be obtained by using the ideal gas equation as illustrated below:
PV = nRT
P × 5000 = 10 × 0.0821 × 263
P × 5000 = 215.923
Divide both side by 5000
P = 215.923 / 5000
P = 0.04 atm
Thus, the pressure is 0.04 atm
The nuclear reactions which are under experimenter's control are said to be controlled nuclear reactions. In this, you can maintain the speed of the incident particle. α and β-decay process are examples of non-controlled nuclear reactions.
The joules required to heat 2L of water in a pot from 20 c to the boiling point of water is calculated using the following formula
Q= MC delta T
M = mass = density x volume( 2 x 1000= 2000ml)
M = 1g/ml x2000 ml = 2000g
C = specific heat capacity = 4.18 g/c
delta T = change in temperature = 100 c ( boiling point of water) - 20 c = 80 c
Q is therefore = 2000 g x 4.18 j/g c x 80c = 668800j
<span>I would say D AlCl3.
covalent bonding is when 2 or more elements share electrons (usually when nonmetals bond with nonmetals)
ionic bonding is when one element steals another's electrons (usually when nonmetals bond with metals)</span>
Boyle's Law states: pV = constant.
24.43 x 1.895 = 46.29485
therefore, 15.6 x _____ = 46.29485
unknown = 2.968L