There are 60 minutes in an hour. Whatever distance a person crosses in 5 mins, he/she can cross 12 times that distance in 1 hour. So, in one hour the person could have crossed 12 X 600 = 7200 meters.
But, 1000 meters equal one kilometer. So, 7200m = 7.2 km. Thus, this person travels 7.2 km in one hour, and hence has a speed of 7.2 km/hr
Solution :
We all know that a bar magnet have two poles, the north pole and the south pole. These poles interacts with each other. The ends of the magnets having similar poles will push each other away while the poles with like charges will pull each others towards it.
The compass needle is also a magnet having south polarity as well as north polarity. When the compass needle is close to the bar magnet, it is opposite to the poles or along the poles. The compass needle shows the direction or is pointed towards the north. So when the compass needle is placed near the north pole of the bar magnet, the pointer of the compass needle points towards the north, i.e. it gets deflected because of he like charges. And when it is placed near the south pole of the magnet, it gets attracted towards it and is pointed towards the pole.
Now as we move the compass needle from the poles to the region that is between the poles, the compass needle pointer points towards the north direction every time. It show a deflection always. If we place the magnetic lines, we will see that the magnetic lines will exit from the north poles and enters the south pole of the bar magnet.
Answer:
To increase the volume of moving water, impoundments or dams are used to collect the water. An opening in the dam uses gravity to drop water down a pipe called a penstock. The moving water causes the turbine to spin, which causes magnets inside a generator to rotate and create electricity.
Answer:
Explanation:
fundamental frequency, f = 250 Hz
Let T be the tension in the string and length of the string is l ans m be the mass of the string initially.
the formula for the frequency is given by
.... (1)
Now the length is doubled ans the tension is four times but the mass remains same.
let the frequency is f'
.... (2)
Divide equation (2) by equation (1)
f' = √2 x f
f' = 1.414 x 250
f' = 353.5 Hz