<h3><u>Answer;</u></h3>
volume = 6.3 × 10^-2 L
<h3><u>Explanation</u>;</h3>
Volume = mass/density
Mass = 0.0565 Kg,
Density = 900 kg/m³
= 0.0565 kg/ 900 kg /m³
= 6.3 × 10^-5 M³
but; 1000 L = 1 m³
Hence, <u>volume = 6.3 × 10^-2 L</u>
Answer:
I should be active for 15 hours to meet the physical activity requirement.
Explanation:
Since time dilates in moving objects, we use the formula t = t₀/√(1 - β²) where t = time in space vehicle, t₀ = time on earth = 9 hours and β = v/c where v = speed of space vehicle = 0.8c.
So, t = t₀/√(1 - β²)
t = 9/√(1 - (v/c)²)
= 9/√(1 - (0.8c/c)²)
= 9/√(1 - (0.8)²)
= 9/√(1 - (0.64)
= 9/√0.36
= 9/0.6
= 15 hr
So, according to a timer on the space vehicle, I should be active for 15 hours to meet the physical activity requirement.
Answer:
The answer is "
"
Explanation:
For point a:
Energy balance equation:


From the above equation:

because the rate of air entering the tank that is
constant.
Since the tank was initially empty and the inlet is constant hence,
Interpolate the enthalpy between
. The surrounding air
temperature:

Substituting the value from ideal gas:

Follow the ideal gas table.
The
and between temperature
Interpolate

Substitute values from the table.
For point b:
Consider the ideal gas equation. therefore, p is pressure, V is the volume, m is mass of gas.
(M is the molar mass of the gas that is
and R is gas constant), and T is the temperature.


For point c:
Entropy is given by the following formula:

Answer:
5.02 m
Explanation:
Applying the formula of maximum height of a projectile,
H = U²sin²Ф/2g...................... Equation 1
Where H = maximum height, U = initial velocity, Ф = angle, g = acceleration due to gravity.
Given: U = 46 ft/sec = 14.021 m/s, Ф = 45°
Constant: g = 9.8 m/s²
Substitute these values into equation 1
H = (14.021)²sin²45/(2×9.8)
H = 196.5884×0.5/19.6
H = 5.02 m.
Hence the ball goes 5.02 m high
Frictional Force is the answer..
Hope it helps