Answer:
In mendelian inheritance, the alleles for a gene show normal dominant-recessive relationship. Chromosomes also show crossover due to which new random combination of traits is possible in the offspring. This crossover takes place between homologous chromosomes during meiosis I.
Organellar DNA like the ones present in mitochondria and chloroplast do not follow mendelian inheritance because unlike nuclear chromosomes they do not have cross over events. There is no orderly segregation of alleles during meiosis. Traits controlled by them are usually inherited as it is and usually it is from the maternal parent because paternal gamete like sperm does not contain mitochondria.
Answer:
The correct answer is "1. cornea 2. retina 3. rods and cones 4. ganglion cells
5. optic nerve 6. thalamus 7. primary visual cortex"
Explanation:
Light must pass a series of structures for the brain being able to interpret the data that comes from the eyes. The order that light stimuli travels from the eye to the brain is as follows:
1. cornea
2. retina
3. rods and cones
4. ganglion cells
5. optic nerve
6. thalamus
7. primary visual cortex
Light enters trough the cornea, the transparent front part of the eye that covers two-thirds of its total optical power; then it goes to the retina which receives the image that could go to the rods or the cones (depending if the light is at low or high levels, respectively). Then, ganglion cells increase the rate of the impulse within the optic nerve, and finally thalamus passes the sensory signal to the primary visual cortex. In this area of the brain, the basic visual features are extracted and interpreted.
I hope this helps with your work :)
Sulfur has six valence electrons, meaning that each atom of this element has six electrons in its outermost shell.
Others pinpoint 1637 as the true origin of Thanksgiving, owing to the fact Massachusetts colony governor John Winthrop declared a day of thanks-giving to celebrate colonial soldiers who had just slaughtered 700 Pequot men, women, and children in what is now Mystic, Connecticut.