First write the equation in slope-intercept form which is more commonly known as <em>y = mx + b</em> form where the <em>m </em>or the coefficient of the x term represents the slope of the <em>b</em> or the constant term represents the y-intercept.
Subtract 2x from both sides to get <em>y = -2x - 4</em>.
I put the x term first because that's how it is in y = mx + b form.
Now we can see that the <em>b</em> or the constant term is -4.
We can write this as the ordered pair (0, -4).
Keep in mind when writing a y-intercept as an ordered pair, your x-coordinate will always be 0 in the ordered pair.
The answer for this one is 29 and 13. Hope it help!
Slope = (change in 'y') / (change in 'x')
If you find two points where the line goes through the corners of boxes,
then count up the 'y' boxes and the 'x' boxes between those two points,
you'll find that the line rises 3 y-boxes for each x-box.
The slope of the line is 3 .
The intercepts of the third degree polynomial corresponds to the zeros of the equation
y = d*(x-a)*(x-b)(x-c)
Where a, b and c are the roots of the polynomial and d an adjustment coefficient.
y = d*(x+2)*(x)*(x-3)
Lets assume d = 1, and we get
y = (x+2)*(x)*(x-3) = x^3 - x^2 - 6x
We graph the equation in the attached file.
Answer:
11 degrees
Step-by-step explanation:
-2+13=11