Answer:
2^3 x 3 x 5^2
Step-by-step explanation:
600/2
300/2
150/2
75/3
25/5
5/5
1
You have 40/16
simplified by 8 and you have 5:2
so the answer is d. 5:2
No, the graphs of the lines are not parallel because if you simplify 27x-3y=-81, you get y=9x+27, and in order to have the lines parallel, both equations must have the same "m" in y=mx+b. 6 and 9 do not equal, so no they are not parallel.
4^x + 6^x = 9^x
4^x + 6^x - 9^x = 0
2^2x + (2×3)^x - 3^2x = 0
2^2x + 2^x×3^x - 3^2x = 0
(⅔)^2x + (⅔)^x - 1 = 0
let t = ( ⅔)^x
t² + t - 1 = 0
t = (-1+√5 ) / 2
(⅔)^x = (-1+√5 ) / 2
x = Log base ⅔ ((-1+√5 ) / 2 )
x = 1.18681
To solve this problem, you have to know these two special factorizations:

Knowing these tells us that if we want to rationalize the numerator. we want to use the top equation to our advantage. Let:
![\sqrt[3]{x+h}=x\\ \sqrt[3]{x}=y](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7Bx%2Bh%7D%3Dx%5C%5C%20%5Csqrt%5B3%5D%7Bx%7D%3Dy%20)
That tells us that we have:

So, since we have one part of the special factorization, we need to multiply the top and the bottom by the other part, so:

So, we have:
![\frac{x+h-h}{h(\sqrt[3]{(x+h)^2}+\sqrt[3]{(x+h)(x)}+\sqrt[3]{x^2})}=\\ \frac{x}{\sqrt[3]{(x+h)^2}+\sqrt[3]{(x+h)(x)}+\sqrt[3]{x^2}}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bx%2Bh-h%7D%7Bh%28%5Csqrt%5B3%5D%7B%28x%2Bh%29%5E2%7D%2B%5Csqrt%5B3%5D%7B%28x%2Bh%29%28x%29%7D%2B%5Csqrt%5B3%5D%7Bx%5E2%7D%29%7D%3D%5C%5C%20%5Cfrac%7Bx%7D%7B%5Csqrt%5B3%5D%7B%28x%2Bh%29%5E2%7D%2B%5Csqrt%5B3%5D%7B%28x%2Bh%29%28x%29%7D%2B%5Csqrt%5B3%5D%7Bx%5E2%7D%7D%20)
That is our rational expression with a rationalized numerator.
Also, you could just mutiply by:
![\frac{1}{\sqrt[3]{x_h}-\sqrt[3]{x}} \text{ to get}\\ \frac{1}{h\sqrt[3]{x+h}-h\sqrt[3]{h}}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B%5Csqrt%5B3%5D%7Bx_h%7D-%5Csqrt%5B3%5D%7Bx%7D%7D%20%5Ctext%7B%20to%20get%7D%5C%5C%20%5Cfrac%7B1%7D%7Bh%5Csqrt%5B3%5D%7Bx%2Bh%7D-h%5Csqrt%5B3%5D%7Bh%7D%7D%20)
Either way, our expression is rationalized.