1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ber [7]
3 years ago
6

Need to evaluate integral pls help me

Mathematics
2 answers:
Lemur [1.5K]3 years ago
8 0

Answer:

Step-by-step explanation:

\int\limits^1_0 {9x^9} \, dx +\int\limits^2_1 {4x^3} \, dx

=\frac{9x^{10}}{10} |_0^1 + x^4|_1^2

=\frac{9}{10}+2^4 -1 = 15\frac{9}{10}

olga nikolaevna [1]3 years ago
4 0

Answer:

\displaystyle \int\limits^2_0 {f(x)} \, dx = \frac{159}{10}

General Formulas and Concepts:

<u>Calculus</u>

Integration

  • Integrals
  • Integral Notation

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Property [Splitting Integral]:                                                               \displaystyle \int\limits^c_a {f(x)} \, dx = \int\limits^b_a {f(x)} \, dx + \int\limits^c_b {f(x)} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle f(x) = \left \{ {{9x^9 ,\ 0 \leq x \leq 1} \atop {4x^3 ,\ 1 \leq x \leq 2}} \right.

\displaystyle \int\limits^2_0 {f(x)} \, dx = \ ?

<u>Step 2: Integrate</u>

  1. [Integral] Rewrite [Integration Property - Splitting Integral]:                       \displaystyle \int\limits^2_0 {f(x)} \, dx = \int\limits^1_0 {f(x)} \, dx + \int\limits^2_1 {f(x)} \, dx
  2. [Integrand] Substitute in function:                                                               \displaystyle \int\limits^2_0 {f(x)} \, dx = \int\limits^1_0 {9x^9} \, dx + \int\limits^2_1 {4x^3} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int\limits^2_0 {f(x)} \, dx = 9 \int\limits^1_0 {x^9} \, dx + 4 \int\limits^2_1 {x^3} \, dx
  4. [Integrals] Integration Rule [Reverse Power Rule]:                                    \displaystyle \int\limits^2_0 {f(x)} \, dx = 9 \bigg( \frac{x^{10}}{10} \bigg) \bigg| \limits^1_0 + 4 \bigg( \frac{x^4}{4} \bigg) \bigg| \limits^2_1
  5. Integration Rule [Fundamental Theorem of Calculus 1]:                            \displaystyle \int\limits^2_0 {f(x)} \, dx = 9 \bigg( \frac{1}{10} \bigg) + 4 \bigg( \frac{15}{4} \bigg)
  6. Simplify:                                                                                                         \displaystyle \int\limits^2_0 {f(x)} \, dx = \frac{159}{10}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

You might be interested in
What is the directrix of the parabola defined by (x + 3)2 = -20(y − 1)?
Aleks [24]
We have that

(x + 3)² = -20(y − 1)
<span>This is actually the vertex form, so we can obtain the vertex already
</span>the vertex is the point (h,k)------------> (-3,1)

4p=-20------------> p=-5
Focus is at (-3,1-5)---------> (-3,-4)
Directrix is at <span>y = 1-(-5)----------> y=6
</span>
the answer is
the directrix is y=6

see the attached figure

4 0
3 years ago
How and what???? I need the answer to #2
allochka39001 [22]
0,7 1,8 5,1 6,7 .... this is a function as well!!
6 0
3 years ago
5X plus 2Y equals 39
VMariaS [17]

Answer:5(7) + 2(2) = 39

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Please help mme mihhhhhh
VMariaS [17]
Well, how do you find the measures of angles when you have a right angle and one angle measurement?
4 0
3 years ago
Eliminate the parameter. x = square root of t, y = 4t + 1
tresset_1 [31]
\sqrt{t}, y=4t+1&#10;

change x=\sqrt{t} into x^{2} =t to get rid of the square root. Keep in mind that if you need to graph the equation, x>=0 because there can't be a negative under the square root.

Then substitute x^{2} into y=4t+1 for t and you get:
y=4 x^{2} +1
4 0
3 years ago
Read 2 more answers
Other questions:
  • A drawer contains a dozen unmatched brown socks and a dozen unmatched black socks. how many socks must someone take out to ensur
    8·1 answer
  • What fraction is equivalent to 5/9
    11·2 answers
  • Dreamtime Laundry purchased $7,000 worth of supplies on June 2 and recorded the purchase as an asset. On June 30, an inventory o
    13·1 answer
  • start with $200 in the account and has earned a total of $8 in interest in 2 years what is the rate of the account
    7·1 answer
  • Which equation has the same solution as x²- 6x - 12 = 0
    5·1 answer
  • P/2.8= 0.6 what is p?
    6·2 answers
  • Determin how many soulutions (x-2)+1=-34 brainly
    9·2 answers
  • Which system of equations is best represented by this graph?
    7·1 answer
  • Find x correctly pleaseeee !!!!!!!!!!!!!! Will mark Brianliest !!!!!!!!!!!!!!!!!!
    5·2 answers
  • Can someone really help me please
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!