Answer:

General Formulas and Concepts:
<u>Calculus</u>
Integration
- Integrals
- Integral Notation
Integration Rule [Reverse Power Rule]: 
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Multiplied Constant]: 
Integration Property [Addition/Subtraction]: ![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7B%5Bf%28x%29%20%5Cpm%20g%28x%29%5D%7D%20%5C%2C%20dx%20%3D%20%5Cint%20%7Bf%28x%29%7D%20%5C%2C%20dx%20%5Cpm%20%5Cint%20%7Bg%28x%29%7D%20%5C%2C%20dx)
Integration Property [Splitting Integral]: 
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify.</em>


<u>Step 2: Integrate</u>
- [Integral] Rewrite [Integration Property - Splitting Integral]:

- [Integrand] Substitute in function:

- [Integrals] Rewrite [Integration Property - Multiplied Constant]:

- [Integrals] Integration Rule [Reverse Power Rule]:

- Integration Rule [Fundamental Theorem of Calculus 1]:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration