1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ber [7]
3 years ago
6

Need to evaluate integral pls help me

Mathematics
2 answers:
Lemur [1.5K]3 years ago
8 0

Answer:

Step-by-step explanation:

\int\limits^1_0 {9x^9} \, dx +\int\limits^2_1 {4x^3} \, dx

=\frac{9x^{10}}{10} |_0^1 + x^4|_1^2

=\frac{9}{10}+2^4 -1 = 15\frac{9}{10}

olga nikolaevna [1]3 years ago
4 0

Answer:

\displaystyle \int\limits^2_0 {f(x)} \, dx = \frac{159}{10}

General Formulas and Concepts:

<u>Calculus</u>

Integration

  • Integrals
  • Integral Notation

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Property [Splitting Integral]:                                                               \displaystyle \int\limits^c_a {f(x)} \, dx = \int\limits^b_a {f(x)} \, dx + \int\limits^c_b {f(x)} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle f(x) = \left \{ {{9x^9 ,\ 0 \leq x \leq 1} \atop {4x^3 ,\ 1 \leq x \leq 2}} \right.

\displaystyle \int\limits^2_0 {f(x)} \, dx = \ ?

<u>Step 2: Integrate</u>

  1. [Integral] Rewrite [Integration Property - Splitting Integral]:                       \displaystyle \int\limits^2_0 {f(x)} \, dx = \int\limits^1_0 {f(x)} \, dx + \int\limits^2_1 {f(x)} \, dx
  2. [Integrand] Substitute in function:                                                               \displaystyle \int\limits^2_0 {f(x)} \, dx = \int\limits^1_0 {9x^9} \, dx + \int\limits^2_1 {4x^3} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int\limits^2_0 {f(x)} \, dx = 9 \int\limits^1_0 {x^9} \, dx + 4 \int\limits^2_1 {x^3} \, dx
  4. [Integrals] Integration Rule [Reverse Power Rule]:                                    \displaystyle \int\limits^2_0 {f(x)} \, dx = 9 \bigg( \frac{x^{10}}{10} \bigg) \bigg| \limits^1_0 + 4 \bigg( \frac{x^4}{4} \bigg) \bigg| \limits^2_1
  5. Integration Rule [Fundamental Theorem of Calculus 1]:                            \displaystyle \int\limits^2_0 {f(x)} \, dx = 9 \bigg( \frac{1}{10} \bigg) + 4 \bigg( \frac{15}{4} \bigg)
  6. Simplify:                                                                                                         \displaystyle \int\limits^2_0 {f(x)} \, dx = \frac{159}{10}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

You might be interested in
Complete the Table
nydimaria [60]

Answer:

N, which is the increment is 4

3 0
3 years ago
What’s the answer to this question? Me and one of my classmates are having trouble on it! ( middle school btw I put high school
elena55 [62]

Answer:

6

Step-by-step explanation:

It would be 6 because on a square, all the sides have to be the same length. The length of the square is equal to the base of the parallelogram.

5 0
3 years ago
Read 2 more answers
Which side lengths cannot form a triangle?
sineoko [7]

Answer:

answer is option A

A, 4+12>6✓

12+6>4✓

4+6>12×

because sum of two sides lengths ina a triangle should greater than the other side's length

5 0
3 years ago
Read 2 more answers
If 2x − 4(x + 1) = −12, evaluate x2 − 1.
Vlad [161]
2x-4(x+1)=-13
1) we solve this equation:
2x-4(x+1)=-12
2x-4x-4=-12
-2x=-12+4
-2x=-8
x=-8/-2
x=4

2) we evalute x²-1
x²-1=4²-1=16-1=15

Answer: 15
6 0
3 years ago
A bag contains blue and yellow marbles. Two marbles are drawn without replacement. The probability of selecting a blue marble an
exis [7]
 blue marbles
y = yellow marbles
 Sum = b+y
 The <span>chance of a blue marble being drawn first is:
b / (b+y) = 0.55 
</span>The <span>chance of a blue marble being drawn first then a yellow next is:
</span>b / (b+y) * y / (b+y-1) = 0.37
This can be solve easily by using a theorem of Bayes 
0.37/0.55 = .67 or 67%
7 0
3 years ago
Other questions:
  • Find the value of x. If necessary, round to the nearest tenth.
    10·1 answer
  • Minus then changes from 115.5 inches tall to 23.1 inches tall. What percent of change is that?
    10·1 answer
  • Which polynomial is equivalent to the expression (3x2 - 2x + 5) - (2x2 - 5x + 1)? (1 point) x2 + 3x + 4 x2 - 7x + 6 x2 - 3x - 6
    5·1 answer
  • 100 POINTS FOR WHO EVER SHOWS THE WORKS AND ANSWERS CORRECTLY. LEGIT 4 QUETIONS BUT MUST SHOW WORK!!
    8·2 answers
  • 308 divided by 36 step by step
    6·1 answer
  • A theatre has 50 seats on the front row. There are 4 additional seats in each following row.
    5·1 answer
  • Shane and Abha earned a team badge that required their team to collect no less than 2000 cans for recycling. Abha collected 178
    7·1 answer
  • In desperate need of help please :/
    7·1 answer
  • Combine like terms in expression below <br><br> 2f + 9e - f + 3e
    6·2 answers
  • 3 times the sum of twice k and 8
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!