1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ber [7]
3 years ago
6

Need to evaluate integral pls help me

Mathematics
2 answers:
Lemur [1.5K]3 years ago
8 0

Answer:

Step-by-step explanation:

\int\limits^1_0 {9x^9} \, dx +\int\limits^2_1 {4x^3} \, dx

=\frac{9x^{10}}{10} |_0^1 + x^4|_1^2

=\frac{9}{10}+2^4 -1 = 15\frac{9}{10}

olga nikolaevna [1]3 years ago
4 0

Answer:

\displaystyle \int\limits^2_0 {f(x)} \, dx = \frac{159}{10}

General Formulas and Concepts:

<u>Calculus</u>

Integration

  • Integrals
  • Integral Notation

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Property [Splitting Integral]:                                                               \displaystyle \int\limits^c_a {f(x)} \, dx = \int\limits^b_a {f(x)} \, dx + \int\limits^c_b {f(x)} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle f(x) = \left \{ {{9x^9 ,\ 0 \leq x \leq 1} \atop {4x^3 ,\ 1 \leq x \leq 2}} \right.

\displaystyle \int\limits^2_0 {f(x)} \, dx = \ ?

<u>Step 2: Integrate</u>

  1. [Integral] Rewrite [Integration Property - Splitting Integral]:                       \displaystyle \int\limits^2_0 {f(x)} \, dx = \int\limits^1_0 {f(x)} \, dx + \int\limits^2_1 {f(x)} \, dx
  2. [Integrand] Substitute in function:                                                               \displaystyle \int\limits^2_0 {f(x)} \, dx = \int\limits^1_0 {9x^9} \, dx + \int\limits^2_1 {4x^3} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int\limits^2_0 {f(x)} \, dx = 9 \int\limits^1_0 {x^9} \, dx + 4 \int\limits^2_1 {x^3} \, dx
  4. [Integrals] Integration Rule [Reverse Power Rule]:                                    \displaystyle \int\limits^2_0 {f(x)} \, dx = 9 \bigg( \frac{x^{10}}{10} \bigg) \bigg| \limits^1_0 + 4 \bigg( \frac{x^4}{4} \bigg) \bigg| \limits^2_1
  5. Integration Rule [Fundamental Theorem of Calculus 1]:                            \displaystyle \int\limits^2_0 {f(x)} \, dx = 9 \bigg( \frac{1}{10} \bigg) + 4 \bigg( \frac{15}{4} \bigg)
  6. Simplify:                                                                                                         \displaystyle \int\limits^2_0 {f(x)} \, dx = \frac{159}{10}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

You might be interested in
Elliot is riding in 100 mile bike race to raise money for charity so far he has completed 7/10 of the race how far has Elliot bi
Dmitry_Shevchenko [17]

<u><em>Answer:</em></u>

Elliot biked 70 miles

<u><em>Explanation:</em></u>

We are given that the total distance of the race is 100 miles

We are also given that Elliot covered \frac{7}{10} of this distance

To get the number of miles covered by Elliot, we will simply multiply the ratio of the covered distance (\frac{7}{10}) by thetotal distance of the race (100 miles)

<u>This is done as follows:</u>

Distance covered = \frac{7}{10} * 100 = 70 miles

<u>Therefore,</u> Elliot biked for 70 miles

Hope this helps :)

4 0
3 years ago
in fifteen minutes greg sailboat went 3/6 miles, gina sailboat went 6/6 miles, and stuart sailboat went 4/6 miles. whose sailboa
Zolol [24]
Gina's did because 6 is bigger than 3 and 4.
3 0
3 years ago
Solve (1/3)² ÷ (1/3)⁷ = 3ⁿ ​
Zarrin [17]

Answer:

n=5

Step-by-step explanation:

(1/3)^2 divided by (1/3)^7 = 243

3^5=243

8 0
2 years ago
Read 2 more answers
There are 15 students in a class and 12 of these students passed their Geometry test. What percentage of these students passed t
nata0808 [166]
80 percent passed their geometry test
3 0
3 years ago
-5/4x -5= -35 solve for x
Lera25 [3.4K]
X=24 im pretty sure that's the answer 
3 0
3 years ago
Read 2 more answers
Other questions:
  • The ratio of Nicole’s money to Sid’s money is 3:11. If Nicole has $33, how much money do Sid and Nicole have together? Show your
    9·2 answers
  • Show all the steps that you use to solve this problem.
    5·1 answer
  • A biologist created the following graph to show the relationship between the temperature of water (x), in degrees Celsius, and t
    15·2 answers
  • How would you teach scientific notation?
    10·2 answers
  • There are 5 cups of oatmeal in a container. Jessica eats 1/3 cup of the oatmeal every day for breakfast. In how many days will J
    14·2 answers
  • If the domain is 0,2,6 what is the range of y =-2x+3
    9·1 answer
  • If the short leg of a 30-60-90 triangle is 6, approximately how long is the hypotenuse?
    10·1 answer
  • Select all sets in which the number 0 is an element.
    7·1 answer
  • 5. In the diagram below, AB is tangent to circle C at point D and AC is perpendicular to BC. If mA = 28 then which of the
    12·1 answer
  • A person had a rectangular-shaped garden with sides of lengths 16 feet and 9 feet.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!