1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ber [7]
2 years ago
6

Need to evaluate integral pls help me

Mathematics
2 answers:
Lemur [1.5K]2 years ago
8 0

Answer:

Step-by-step explanation:

\int\limits^1_0 {9x^9} \, dx +\int\limits^2_1 {4x^3} \, dx

=\frac{9x^{10}}{10} |_0^1 + x^4|_1^2

=\frac{9}{10}+2^4 -1 = 15\frac{9}{10}

olga nikolaevna [1]2 years ago
4 0

Answer:

\displaystyle \int\limits^2_0 {f(x)} \, dx = \frac{159}{10}

General Formulas and Concepts:

<u>Calculus</u>

Integration

  • Integrals
  • Integral Notation

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Property [Splitting Integral]:                                                               \displaystyle \int\limits^c_a {f(x)} \, dx = \int\limits^b_a {f(x)} \, dx + \int\limits^c_b {f(x)} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle f(x) = \left \{ {{9x^9 ,\ 0 \leq x \leq 1} \atop {4x^3 ,\ 1 \leq x \leq 2}} \right.

\displaystyle \int\limits^2_0 {f(x)} \, dx = \ ?

<u>Step 2: Integrate</u>

  1. [Integral] Rewrite [Integration Property - Splitting Integral]:                       \displaystyle \int\limits^2_0 {f(x)} \, dx = \int\limits^1_0 {f(x)} \, dx + \int\limits^2_1 {f(x)} \, dx
  2. [Integrand] Substitute in function:                                                               \displaystyle \int\limits^2_0 {f(x)} \, dx = \int\limits^1_0 {9x^9} \, dx + \int\limits^2_1 {4x^3} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int\limits^2_0 {f(x)} \, dx = 9 \int\limits^1_0 {x^9} \, dx + 4 \int\limits^2_1 {x^3} \, dx
  4. [Integrals] Integration Rule [Reverse Power Rule]:                                    \displaystyle \int\limits^2_0 {f(x)} \, dx = 9 \bigg( \frac{x^{10}}{10} \bigg) \bigg| \limits^1_0 + 4 \bigg( \frac{x^4}{4} \bigg) \bigg| \limits^2_1
  5. Integration Rule [Fundamental Theorem of Calculus 1]:                            \displaystyle \int\limits^2_0 {f(x)} \, dx = 9 \bigg( \frac{1}{10} \bigg) + 4 \bigg( \frac{15}{4} \bigg)
  6. Simplify:                                                                                                         \displaystyle \int\limits^2_0 {f(x)} \, dx = \frac{159}{10}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

You might be interested in
How do you turn a fahrenheit to kelvins??
densk [106]

<span>1.Subtract 32 from the Fahrenheit temperature.
2.Multiply this number by 5.
3.Divide this number by 9.
<span>4.Add 273.15 to this number.</span></span>
6 0
3 years ago
A number line is numbered in tenths Describe where you would plot √87.35
sleet_krkn [62]

Answer:

Plot at 9.3

Step-by-step explanation:

Take the square root of 87.35

sqrt(87.35)

9.346122191

Rounding to the nearest tenth

9.3

Plot at 9.3

7 0
3 years ago
When Jaylen started high school, 1,430 students attended his school. On the day of his graduation, only 1,001 students attended
e-lub [12.9K]
429 students decreased
8 0
3 years ago
Read 2 more answers
HELP WILL GIVE BRAINLIEST BUT MUST ANSWER ASAP
ser-zykov [4K]

Answer:a and point b

i hope i helped u

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Give the domain and range.
Ymorist [56]

Answer:Graphs of inverse functions have a domain and range just like any other graph of a function. The domain of an inverse function is the range of the original, and the range of an inverse function is the domain of an original.

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • What should u do if you have to find out the modal if we are using coulours
    12·1 answer
  • Last one my math genius friends.
    7·2 answers
  • PLEASE PLEASE PLEASE HELP!<br><br> What is the number in standard form?<br><br><br> 6.14×10^−9
    9·1 answer
  • Solve by using the perfect squares method.
    11·2 answers
  • How do you do this question I don’t understand
    5·1 answer
  • Make a number line and show all values of x such that x≤1 2/3 and x&lt;− 3/4
    9·1 answer
  • Denise sells pizza for $0.89 a slice. Each slice of her pepperoni pizza is 1/8 of pizza. Each slice of her mushroom pizza is 1/1
    6·1 answer
  • Please help me asap​
    5·1 answer
  • Can someone explain please and thank you!!
    13·1 answer
  • Find the area of the figure. Round your answer to the nearest hundredth, if necessary.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!