1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ber [7]
2 years ago
6

Need to evaluate integral pls help me

Mathematics
2 answers:
Lemur [1.5K]2 years ago
8 0

Answer:

Step-by-step explanation:

\int\limits^1_0 {9x^9} \, dx +\int\limits^2_1 {4x^3} \, dx

=\frac{9x^{10}}{10} |_0^1 + x^4|_1^2

=\frac{9}{10}+2^4 -1 = 15\frac{9}{10}

olga nikolaevna [1]2 years ago
4 0

Answer:

\displaystyle \int\limits^2_0 {f(x)} \, dx = \frac{159}{10}

General Formulas and Concepts:

<u>Calculus</u>

Integration

  • Integrals
  • Integral Notation

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Property [Splitting Integral]:                                                               \displaystyle \int\limits^c_a {f(x)} \, dx = \int\limits^b_a {f(x)} \, dx + \int\limits^c_b {f(x)} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle f(x) = \left \{ {{9x^9 ,\ 0 \leq x \leq 1} \atop {4x^3 ,\ 1 \leq x \leq 2}} \right.

\displaystyle \int\limits^2_0 {f(x)} \, dx = \ ?

<u>Step 2: Integrate</u>

  1. [Integral] Rewrite [Integration Property - Splitting Integral]:                       \displaystyle \int\limits^2_0 {f(x)} \, dx = \int\limits^1_0 {f(x)} \, dx + \int\limits^2_1 {f(x)} \, dx
  2. [Integrand] Substitute in function:                                                               \displaystyle \int\limits^2_0 {f(x)} \, dx = \int\limits^1_0 {9x^9} \, dx + \int\limits^2_1 {4x^3} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int\limits^2_0 {f(x)} \, dx = 9 \int\limits^1_0 {x^9} \, dx + 4 \int\limits^2_1 {x^3} \, dx
  4. [Integrals] Integration Rule [Reverse Power Rule]:                                    \displaystyle \int\limits^2_0 {f(x)} \, dx = 9 \bigg( \frac{x^{10}}{10} \bigg) \bigg| \limits^1_0 + 4 \bigg( \frac{x^4}{4} \bigg) \bigg| \limits^2_1
  5. Integration Rule [Fundamental Theorem of Calculus 1]:                            \displaystyle \int\limits^2_0 {f(x)} \, dx = 9 \bigg( \frac{1}{10} \bigg) + 4 \bigg( \frac{15}{4} \bigg)
  6. Simplify:                                                                                                         \displaystyle \int\limits^2_0 {f(x)} \, dx = \frac{159}{10}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

You might be interested in
Solve the inequality 171 &gt; -6x, and graph the solution. What does the graph look like?
NARA [144]

Answer: the answer is A

Step-by-step explanation:

Jus took the quiz

4 0
3 years ago
Finding Derivatives Implicity In Exercise, find dy/dx implicity.<br> x2 - 3 ln y + y2 = 10
Veseljchak [2.6K]

Answer:

\frac{dy}{dx}=-\frac{2xy}{2y^2-3}

Step-by-step explanation:

We are given that

x^2-3lny+y^2=0

Differentiate w.r.t x

2x-\frac{3}{y}\frac{dy}{dx}+2y\frac{dy}{dx}=0

By using formula

\frac{dx^n}{dx}=nx^{n-1}

\frac{d(lnx)}{dx}=\frac{1}{x}

\frac{dy^n}{dx}=ny^{n-1}\frac{dy}{dx}

\frac{dy}{dx}(-\frac{3}{y}+2y)+2x=0

\frac{dy}{dx}(-\frac{3}{y}+2y)=-2x

\frac{dy}{dx}=-\frac{2x}{-\frac{3}{y}+2y}

\frac{dy}{dx}=-\frac{2xy}{2y^2-3}

Hence, the derivative of function

\frac{dy}{dx}=-\frac{2xy}{2y^2-3}

8 0
3 years ago
Sophie surveyed 30 random students in her school and 18 said they enjoy watching baseball. A total of 1,050 students are in the
Kitty [74]

Answer:

630 people

Step-by-step explanation:

Ratios:

\frac{18}{30} =\frac{x}{1050} \\\\30x=18900\\x=630

5 0
3 years ago
Given the function f(x) = 6x^2 −13, what is f(-3)?
Naya [18.7K]
<h3>Answer: 41</h3>

Work Shown:

f(x) = 6x^2 - 13

f(x) = 6(x)^2 - 13

f(-3) = 6(-3)^2 - 13 ... replace every x with -3; use PEMDAS to simplify

f(-3) = 6(9) - 13

f(-3) = 54 - 13

f(-3) = 41

7 0
3 years ago
Which of the following relations is a function?
Klio2033 [76]
A.\\(\boxed{3}, 1),\ (-3, 4),\ (-5, 1)\, (\boxed{3}, -5)-NO\\\\B.\\(-5, 1),\ (-3, -5),\ (3, 5)\, (6, 1)-YES\\\\C.\\(\boxed{-5}, 4),\ (-3, 6),\ (\boxed{-5}, 3),\ (6, 2)-NO\\\\D.\\(-5, 1),\ (\boxed{-3}, 4),\ (3, -5),\ (\boxed{-3}, 6)-NO
5 0
3 years ago
Read 2 more answers
Other questions:
  • What is 136829639*-4328074
    6·1 answer
  • A printer is printing photos. For every 12 photos, the printer takes 4 mins.
    12·1 answer
  • Christopher is 20 years younger than Ishaan. Ishaan and Christopher first met two years ago. Fourteen years ago, Ishaan as old a
    10·2 answers
  • What will the temperature be in degrees Fahrenheit when it is 80° Celsius outside? (Recall the formula F = (9C 5) + 32).
    10·2 answers
  • SOMEONE HELP ME ON THESE QUESTIONS
    15·1 answer
  • What is the definition of an opposite ray
    12·1 answer
  • Marshall compared his 8 most recent cell phone bills. They were $102, $97 $98 $102 $98 $104 $95 and 102 what was the mode cost
    8·1 answer
  • The difference between the high and low temperatures one day was 26°F. The low was 64°F. find
    6·1 answer
  • YO please help actually been waiting for an hour and a half cuz so many trolls lol. &lt;3 giivng brainliest, and ty in advance g
    15·2 answers
  • F(x)=x-5 y g(x)=3x+4 <br><br><br> Plis rapido
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!