Answer:
1. reflection across x-axis
2. translation 6 units to the right and 3 units up (x+6,y+3)
Step-by-step explanation:
The trapezoid ABCD has it vertices at points A(-5,2), B(-3,4), C(-2,4) and D(-1,2).
First transformation is the reflection across the x-axis with the rule
(x,y)→(x,-y)
so,
- A(-5,2)→A'(-5,-2)
- B(-3,4)→B'(-3,-4)
- C(-2,4)→C'(-2,-4)
- D(-1,2)→D'(-1,-2)
Second transformation is translation 6 units to the right and 3 units up with the rule
(x,y)→(x+6,y+3)
so,
- A'(-5,-2)→E(1,1)
- B'(-3,-4)→H(3,-1)
- C'(-2,-4)→G(4,-1)
- D'(-1,-2)→F(5,1)
There are two ways to solve this.
The first way is logically.
Mary can
-wear a pink dress with black shoes -wear a pink dress with white shoes
-wear a blue dress with black shoes -wear a blue dress with white shoes
-wear a yellow dress with black shoes - wear a yellow dress with white shoes
Count them up, and you'll get six combinations!
Another way is simply mathematically, which is easier in my opinion.
3 (different colored dresses) × 2 (different colored shoes) = 6 (combos)
ANSWER
the factor <em>will </em>
<em>1</em><em>1</em><em> </em><em>is </em><em>common</em><em> </em><em>in </em><em>both </em><em>the </em><em>given </em><em>term</em>
<em>so,</em><em> </em><em>when </em><em>we </em><em>take </em><em>1</em><em>1</em><em> </em><em>from </em><em>both </em><em>term </em>
<em>it </em><em>will </em><em>left </em><em>with </em><em> </em>
<em>1</em><em>1</em><em>(</em><em> </em><em>2</em><em>+</em><em>1</em><em>)</em><em> </em>
<em>this </em><em>is </em><em>the </em><em>final </em><em>answer</em><em> </em>
<em>hope </em><em>it </em><em>helps </em><em>and </em><em>u </em><em>have </em><em>a </em><em>great</em><em> </em><em><u>day</u></em>