Answer:
Pie: Pie is a dessert that has pastry from top to bottom and has filling in the middle.
Best type of pie: In my opinion: Key Lime Pie
Pie Emoji: No clue, you'll have to email Apple or Samsung (or whatever your phone provider is) and ask them to update or change the emoji.
Step-by-step explanation:
These are very important questions
 
        
                    
             
        
        
        
To equally divide the pizzas, let's use a similar point to base on the remaining pizzas. On the first pizza 1/12 was not eaten an the other was 2/4. Use 12 as the base parts. 1/12 +2/4. 2/4 is equal to 1/2, so let's used 6/12 (also 1/2) to replace 2/4 to add both fractions. 1/12+6/12=7/12.
        
             
        
        
        
 Answer:
How many drinks should be sold to get a maximal profit? 468
Sales of the first one = 345 cups 
Sales of the second one = 123 cups
Step-by-step explanation:
maximize 1.2F + 0.7S
where: 
F = first type of drink
S = second type of drink
constraints:
sugar ⇒ 3F + 10S ≤  3000
juice ⇒ 9F + 4S ≤  3600
coffee ⇒ 4F + 5S ≤  2000
using solver the maximum profit is $500.10
and the optimal solution is 345F + 123S 
 
        
             
        
        
        
To find the zeros of a quadratic fiunction given the equation you can use the next quadratic formula after equal the function to 0:
![\begin{gathered} ax^2+bx+c=0 \\  \\ x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20ax%5E2%2Bbx%2Bc%3D0%20%5C%5C%20%20%5C%5C%20x%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D%20%5Cend%7Bgathered%7D)
For the given function:

![x=\frac{-(-10)\pm\sqrt[]{(-10)^2-4(2)(-3)}}{2(2)}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-%28-10%29%5Cpm%5Csqrt%5B%5D%7B%28-10%29%5E2-4%282%29%28-3%29%7D%7D%7B2%282%29%7D)
![x=\frac{10\pm\sqrt[]{100+24}}{4}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B10%5Cpm%5Csqrt%5B%5D%7B100%2B24%7D%7D%7B4%7D)
![\begin{gathered} x=\frac{10\pm\sqrt[]{124}}{4} \\  \\ x=\frac{10\pm\sqrt[]{2\cdot2\cdot31}}{4} \\  \\ x=\frac{10\pm\sqrt[]{2^2\cdot31}}{4} \\  \\ x=\frac{10\pm2\sqrt[]{31}}{4} \\  \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%3D%5Cfrac%7B10%5Cpm%5Csqrt%5B%5D%7B124%7D%7D%7B4%7D%20%5C%5C%20%20%5C%5C%20x%3D%5Cfrac%7B10%5Cpm%5Csqrt%5B%5D%7B2%5Ccdot2%5Ccdot31%7D%7D%7B4%7D%20%5C%5C%20%20%5C%5C%20x%3D%5Cfrac%7B10%5Cpm%5Csqrt%5B%5D%7B2%5E2%5Ccdot31%7D%7D%7B4%7D%20%5C%5C%20%20%5C%5C%20x%3D%5Cfrac%7B10%5Cpm2%5Csqrt%5B%5D%7B31%7D%7D%7B4%7D%20%5C%5C%20%20%5Cend%7Bgathered%7D)
![\begin{gathered} x_1=\frac{10}{4}+\frac{2\sqrt[]{31}}{4} \\  \\ x_1=\frac{5}{2}+\frac{\sqrt[]{31}}{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x_1%3D%5Cfrac%7B10%7D%7B4%7D%2B%5Cfrac%7B2%5Csqrt%5B%5D%7B31%7D%7D%7B4%7D%20%5C%5C%20%20%5C%5C%20x_1%3D%5Cfrac%7B5%7D%7B2%7D%2B%5Cfrac%7B%5Csqrt%5B%5D%7B31%7D%7D%7B2%7D%20%5Cend%7Bgathered%7D)
![\begin{gathered} x_2=\frac{10}{4}-\frac{2\sqrt[]{31}}{4} \\  \\ x_2=\frac{5}{2}-\frac{\sqrt[]{31}}{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x_2%3D%5Cfrac%7B10%7D%7B4%7D-%5Cfrac%7B2%5Csqrt%5B%5D%7B31%7D%7D%7B4%7D%20%5C%5C%20%20%5C%5C%20x_2%3D%5Cfrac%7B5%7D%7B2%7D-%5Cfrac%7B%5Csqrt%5B%5D%7B31%7D%7D%7B2%7D%20%5Cend%7Bgathered%7D)
Then, the zeros of the given quadratic function are:
![\begin{gathered} x=\frac{5}{2}+\frac{\sqrt[]{31}}{2} \\  \\ x_{}=\frac{5}{2}-\frac{\sqrt[]{31}}{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%3D%5Cfrac%7B5%7D%7B2%7D%2B%5Cfrac%7B%5Csqrt%5B%5D%7B31%7D%7D%7B2%7D%20%5C%5C%20%20%5C%5C%20x_%7B%7D%3D%5Cfrac%7B5%7D%7B2%7D-%5Cfrac%7B%5Csqrt%5B%5D%7B31%7D%7D%7B2%7D%20%5Cend%7Bgathered%7D)
Answer: Third option
 
        
             
        
        
        
The standard equation of a circle is expressed as
(x - h)^2 + (y - k)^2 = r^2
where
h is the x coordinate of the center of the circle
k is the y coordinate of the center of the circle
r is the radius of the circle(the distance from the center of the circle to the circumference
From the graph, 
h = - 1
y = 4
r = 5
By substituting these values into the equation, we have
(x - - 1)^2 + (y - 4)^2 = 5^2
(x + 1)^2 + (y - 4)^2 = 25
Thus, the equation of the circle is
(x + 1)^2 + (y - 4)^2 = 25