Answer:
2123.72 cm²
Step-by-step explanation:
Hope it helps
The blanks in this two-column proof should be filled as follows:
<u>Statements Reasons</u>_______________
m∠1 = m∠3 Given
m∠CBA = m∠ABE + m∠CBD Angle Addition Postulate
m∠ABE = m∠3 + m∠2 Substitution Property of Equality
m∠CBD = m∠3 + m∠2 Substitution Property of Equality
m∠ABE ≅ m∠CBD Transitive Property of Equality
<h3>What is the Angle Addition Postulate?</h3>
In Mathematics, the Angle Addition Postulate states that the measure of an angle formed by two (2) angles that are placed side by side to each other is equal to the sum of the measures of the two (2) angles.
This ultimately implies that, the Angle Addition Postulate can be used to determine the measurement of a missing angle in a geometric figure or it can be used for calculating an angle that is formed by two (2) or more angles such as m∠CBA = m∠ABE + m∠CBD.
Read more on Angle Addition Postulate here: brainly.com/question/24746945
#SPJ1
Answer:
13
Step-by-step explanation:
y=mx+b
b= y-intercept
Answer:
Holly's score is an outlier because the mean of the data is 83, and 30 is very far then 83.
The mean is 83
The median is 87
Removing the outlier change the mean because the mean became higher.
The mean was most affected by the outlier because the mean changed to 86. 31
The equation can be used to find other combinations of x and y is y^2 = (1/16)x^3
<h3>How to determine the equation?</h3>
The direct variation from the square of y to the cube of x is represented as:
y^2 = kx^3
Where k represents the variation constant.
When x = 4, y = 2.
So, we have:
2^2 = k * 4^3
This gives
4 = 64k
Divide both sides by 64
k = 1/16
Substitute k = 1/16 in y^2 = kx^3
y^2 = (1/16)x^3
Hence, the equation can be used to find other combinations of x and y is y^2 = (1/16)x^3
Read more about direct variation at:
brainly.com/question/6499629
#SPJ1