1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oee [108]
2 years ago
5

What are the states of energy? List the Laws of Thermodynamics.

Biology
2 answers:
devlian [24]2 years ago
6 0

Answer:

The laws of thermodynamics define a group of physical quantities, such as temperature, energy, and entropy, that characterize thermodynamic systems in thermodynamic equilibrium.

Explanation:

Temka [501]2 years ago
3 0


What are the states of energy? List the Laws of Thermodynamics.
Answer: The first law, also known as Law of Conservation of Energy, states that energy cannot be created or destroyed in an isolated system. The second law of thermodynamics states that the entropy of any isolated system always increases.

Paragraph: Discuss the three laws of thermodynamics.
Key Points

The first law, also known as Law of Conservation of Energy, states that energy cannot be created or destroyed in an isolated system.
The second law of thermodynamics states that the entropy of any isolated system always increases.
The third law of thermodynamics states that the entropy of a system approaches a constant value as the temperature approaches absolute zero.
Terms

absolute zeroThe lowest temperature that is theoretically possible.
entropyA thermodynamic property that is the measure of a system’s thermal energy per unit of temperature that is unavailable for doing useful work.

System or Surroundings

In order to avoid confusion, scientists discuss thermodynamic values in reference to a system and its surroundings. Everything that is not a part of the system constitutes its surroundings. The system and surroundings are separated by a boundary. For example, if the system is one mole of a gas in a container, then the boundary is simply the inner wall of the container itself. Everything outside of the boundary is considered the surroundings, which would include the container itself.

The boundary must be clearly defined, so one can clearly say whether a given part of the world is in the system or in the surroundings. If matter is not able to pass across the boundary, then the system is said to be closed; otherwise, it is open. A closed system may still exchange energy with the surroundings unless the system is an isolated one, in which case neither matter nor energy can pass across the boundary.


A Thermodynamic SystemA diagram of a thermodynamic system
The First Law of Thermodynamics

The first law of thermodynamics, also known as Law of Conservation of Energy, states that energy can neither be created nor destroyed; energy can only be transferred or changed from one form to another. For example, turning on a light would seem to produce energy; however, it is electrical energy that is converted.

A way of expressing the first law of thermodynamics is that any change in the internal energy (∆E) of a system is given by the sum of the heat (q) that flows across its boundaries and the work (w) done on the system by the surroundings:

Δ
E
=
q
+
w
Δ
E
=
q
+
w

This law says that there are two kinds of processes, heat and work, that can lead to a change in the internal energy of a system. Since both heat and work can be measured and quantified, this is the same as saying that any change in the energy of a system must result in a corresponding change in the energy of the surroundings outside the system. In other words, energy cannot be created or destroyed. If heat flows into a system or the surroundings do work on it, the internal energy increases and the sign of q and w are positive. Conversely, heat flow out of the system or work done by the system (on the surroundings) will be at the expense of the internal energy, and q and w will therefore be negative.

The Second Law of Thermodynamics

The second law of thermodynamics says that the entropy of any isolated system always increases. Isolated systems spontaneously evolve towards thermal equilibrium—the state of maximum entropy of the system. More simply put: the entropy of the universe (the ultimate isolated system) only increases and never decreases.

A simple way to think of the second law of thermodynamics is that a room, if not cleaned and tidied, will invariably become more messy and disorderly with time – regardless of how careful one is to keep it clean. When the room is cleaned, its entropy decreases, but the effort to clean it has resulted in an increase in entropy outside the room that exceeds the entropy lost.

The Third Law of Thermodynamics

The third law of thermodynamics states that the entropy of a system approaches a constant value as the temperature approaches absolute zero. The entropy of a system at absolute zero is typically zero, and in all cases is determined only by the number of different ground states it has. Specifically, the entropy of a pure crystalline substance (perfect order) at absolute zero temperature is zero. This statement holds true if the perfect crystal has only one state with minimum energy.
You might be interested in
According to the data, which of these pairs of organisms are
boyakko [2]
Where is the data I need to see the data to answer
3 0
3 years ago
Chinchillas
Yuliya22 [10]
The answer is : C.) Chinchillas are used as models for this research because their hearing ability is similar to that of a human. Hope I helped ;)
8 0
3 years ago
Which of these organisms is a vertabrate? tulip, horse, slug, or fungus
Tresset [83]
Vertabrate because slug doesn't have bones. it's a slug. fungus is nasty which cuts it out. Tulips are just flowers.
4 0
3 years ago
Which of the following is NOT a necessary characteristic of life?
jeka57 [31]

Answer:

I would say B?

Explanation:

5 0
3 years ago
Read 2 more answers
Planets and other objects in space with more mass also have more..
jeka57 [31]

Answer:

They have more gravity

7 0
3 years ago
Other questions:
  • What role do plasmodesmata play in plant cells? see section 11.2 (page 239) . view available hint(s) what role do plasmodesmata
    14·1 answer
  • What is bounce height considered if a ball is dropped and it is noted how high it bounces?
    13·2 answers
  • A human zygote contains ____ chromosomes from the biological mother and ____ chromosomes from the biological father.
    13·1 answer
  • What minerals play a role in healthy bone growth and maintenance?
    11·1 answer
  • Please help me!! :((
    12·1 answer
  • What is a chromosome
    15·2 answers
  • Does anyone knows the answer of this question??
    5·1 answer
  • Write the correct phenotype for the given statement. Need Answers ASAP!! Will give brainly!
    7·1 answer
  • In the essay box below, submit any observations you made, as well as the answers to the questions above. Then write a summary pa
    8·2 answers
  • Why is meiosis important for sexua<br> reproduction?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!