1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Juli2301 [7.4K]
2 years ago
14

Find the equation of the quadratic function f whose graph is shown below.

Mathematics
1 answer:
Marianna [84]2 years ago
6 0

Step-by-step explanation:

A quadratic function is a second-degree polynomial function with the general form

                                          f(x) \ = \ ax^{2} \ + \ bx \ + \ c,

where a, b, and c are real numbers, and a \ \neq \ 0.

The standard form or the vertex form of a quadratic function is, however, a little different from the general form. To get the standard form from the general form, we need to use the "complete the square" method.

                          f(x) \ = \ ax^{2} \ + \ bx \ + \ c \\ \\ \\ f(x) \ = \ a\left(x^{2} \ + \ \displaystyle\frac{b}{a}x \right) \ + \ c \\ \\ \\ f(x) \ = \ a\left[x^{2} \ + \ \displaystyle\frac{b}{a}x \ + \ \left(\displaystyle\frac{b}{2a}\right)^{2} \ - \ \left(\displaystyle\frac{b}{2a}\right)^{2} \right] \ + \ c \\ \\ \\ f(x) \ = \ a\left[x^{2} \ + \ \displaystyle\frac{b}{a}x \ + \ \left(\displaystyle\frac{b}{2a}\right)^{2}\right] \ - \ a\left(\displaystyle\frac{b}{2a}\right)^{2} \ + \ c

                          f(x) \ = \ a\left(x \ + \ \displaystyle\frac{b}{2a}\right)^{2} \ + \ c \ - \ a\left(\displaystyle\frac{b^{2}}{4a^{2}}\right) \\ \\ \\ f(x) \ = \ a\left(x \ + \ \displaystyle\frac{b}{2a}\right)^{2} \ + \ c \ - \ \displaystyle\frac{b^{2}}{4a}

Let

                                         h \ = \ -\displaystyle\frac{b}{2a}     and     k \ = \ c \ - \ \displaystyle\frac{b^{2}}{4a},

then the expression reduces into

                                              f(x) \ = \ a \left(x \ - \ h\right)^{2} \ + \ k,

where the point (<em>h</em>, <em>k</em>) are the coordinates for the vertex of the quadratic function.

There are two different methods to approach this question. First, we consider the general form of the quadratic function, it is observed that has a y-intercept at the point \left(0, \ 2\right), so

                                            f(0) \ = \ -2 \\ \\ \\ f(0) \ = \ a(0)^{2} \ + \ b(0) + c \\ \\ \\ c = \ -2.

Additionally, it is pointed that two distinct points (-1, \ -3) and (-4, \ 6) lies on the quadratic graph, hence

                                       f(-1) \ = \ -3 \\ \\ \\ f(-1) \ = \ a(-1)^{2} \ + \ b(-1) \ -2 \\ \\ \\ \-\hspace{0.36cm} -3 \ = \ a \ - \ b \ -2 \\ \\ \\ \-\hspace{0.3} a \ - \ b \ = \ -1 \ \ \ \ \ \ $-----$ \ (1)

and

                                     \-\hspace{0.18cm}f(-4) \ = \ 6 \\ \\ \\ \-\hspace{0.18cm} f(-4) \ = \ a(-4)^{2} \ + \ b(-4) \ -2 \\ \\ \\ \-\hspace{0.97cm} 6 \ = \ 16a \ - \ 4b \ -2 \\ \\ \\ \-\hspace{0.98cm} 8 \ = \ 16a \ - \ 4b \\ \\ \\ 4a \ - \ b \ = \ 2 \ \ \ \ \ \ $-----$ \ (2).

Subtract equation (1) from equation (2) term-by-term,

                          \-\hspace{0.72cm} (4a \ - \ b) \ - \ (a \ - \ b) \ = \ 2 \ - \ (-1) \\ \\ \\ (4a \ - \ a) \ + \ \left[-b \ - \ (-b)\right] \ = \ 2 \ + \ 1 \\ \\ \\ \-\hspace{3.8cm} 3a \ = \ 3 \\ \\ \\ \-\hspace{4cm} a \ = \ 1

Substitute a \ = \ 1 into equation (1),

                                                 1 \ - \ b \ = \ -1 \\ \\ \\ \-\hspace{0.86cm} b \ = \ 2.

Therefore, the equation of the quadratic function is

                                               f(x) \ = \ x^2 \ + \ 2x \ -2.

\rule{12.5cm}{0.02cm}

Alternatively, the vertex of the quadratic function is given as the point (-1, \ -3), substitute these coordinates into the vertex form of a quadratic function.

                                            f(x) = a\left(x \ + \ 1\right)^{2} \ - \ 3.

Substitute the point (-4, \ 6) into the function above,

                                     f(-4) \ = \ 6 \\ \\ \\ f(-4) \ = \ a\left[(-4) \ + \ 1\right]^{2} \ - \ 3 \\ \\ \\ \-\hspace{0.75cm} 6 \ = \ a(-3)^{2} \ - \ 3 \\ \\ \\ \-\hspace{0.55cm} 9a \ = \ 9 \\ \\ \\ \-\hspace{0.75cm} a \ = \ 1.

Therefore, the general form of the quadratic function is

                                       f(x) \ = \ (x \ + \ 1)^{2} \ - \ 3 \\ \\ \\ f(x) \ = \ (x^2 \ + \ 2x \ + \ 1) \ - \ 3 \\ \\ \\ f(x) \ = \ x^2 \ + \ 2x \ - \ 2.

You might be interested in
Marvin has a coupon that discounts the rental of a full-size car by $25. The rental car costs $49 per day and the insurance $21
Tanzania [10]
49-25=24
24+21=45
456÷45=10.3333333333333
Marvin will have the car for about 10 days.
6 0
3 years ago
If the hypotenuse of a right triangle is 125 units long and the short leg adjacent to the right angle is 32 units long, then det
Licemer1 [7]
A^2+b^2=c^2
32^2+b^2=125^2
1024+b^2=15625
-1024 -1024
b^2=14601
√b^2=√14601
b=120.834598
Therefore the length if the leg is about 120.8 units long
8 0
3 years ago
Read 2 more answers
If the relationship is proportional, what is the missing value from the table? x / y 8 / 6 16 / ? 24 / 18 answers under here! 8,
Marysya12 [62]

Answer:

12

Step-by-step explanation:

Edjunuity 2020

pls mark branliest thx

9 0
3 years ago
Read 2 more answers
Gm someone help me ?
Olegator [25]
Letter D.

Congruent shapes have the same angles, proportions, etc. but they're not always the same size.


Hope it helped,

Happy homework/ study/ exam!
8 0
3 years ago
Read 2 more answers
(-7/10+0.15)÷(-0.125)
AlladinOne [14]

= -0.55/-0.125

= 4.4


I hope that's help.

3 0
3 years ago
Other questions:
  • Suppose that Jean studied for the Graduate Management Admission Test (GMAT) using a well-known preparation class and was thrille
    6·1 answer
  • 60 degrees<br> 40 degrees<br> 130 degrees<br> 120 degrees
    7·2 answers
  • Please help!!!!!! ALL​
    9·1 answer
  • Gabriella went skiing. She paid $35 to rent skis and $15 an hour to ski. If she paid $95 how many hours did she ski? Write an eq
    9·2 answers
  • Janelle has 342 pennies, 62 nickels and 12 dimes
    7·2 answers
  • -5b = -20 b= need help with homwork
    15·2 answers
  • Describe how to write an equation from a table of values using a graph.
    5·1 answer
  • A + B= 1233445667788
    13·2 answers
  • Please helppppppppp :((((((((((((((((((
    14·2 answers
  • Look at this graph:
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!