1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Juli2301 [7.4K]
2 years ago
14

Find the equation of the quadratic function f whose graph is shown below.

Mathematics
1 answer:
Marianna [84]2 years ago
6 0

Step-by-step explanation:

A quadratic function is a second-degree polynomial function with the general form

                                          f(x) \ = \ ax^{2} \ + \ bx \ + \ c,

where a, b, and c are real numbers, and a \ \neq \ 0.

The standard form or the vertex form of a quadratic function is, however, a little different from the general form. To get the standard form from the general form, we need to use the "complete the square" method.

                          f(x) \ = \ ax^{2} \ + \ bx \ + \ c \\ \\ \\ f(x) \ = \ a\left(x^{2} \ + \ \displaystyle\frac{b}{a}x \right) \ + \ c \\ \\ \\ f(x) \ = \ a\left[x^{2} \ + \ \displaystyle\frac{b}{a}x \ + \ \left(\displaystyle\frac{b}{2a}\right)^{2} \ - \ \left(\displaystyle\frac{b}{2a}\right)^{2} \right] \ + \ c \\ \\ \\ f(x) \ = \ a\left[x^{2} \ + \ \displaystyle\frac{b}{a}x \ + \ \left(\displaystyle\frac{b}{2a}\right)^{2}\right] \ - \ a\left(\displaystyle\frac{b}{2a}\right)^{2} \ + \ c

                          f(x) \ = \ a\left(x \ + \ \displaystyle\frac{b}{2a}\right)^{2} \ + \ c \ - \ a\left(\displaystyle\frac{b^{2}}{4a^{2}}\right) \\ \\ \\ f(x) \ = \ a\left(x \ + \ \displaystyle\frac{b}{2a}\right)^{2} \ + \ c \ - \ \displaystyle\frac{b^{2}}{4a}

Let

                                         h \ = \ -\displaystyle\frac{b}{2a}     and     k \ = \ c \ - \ \displaystyle\frac{b^{2}}{4a},

then the expression reduces into

                                              f(x) \ = \ a \left(x \ - \ h\right)^{2} \ + \ k,

where the point (<em>h</em>, <em>k</em>) are the coordinates for the vertex of the quadratic function.

There are two different methods to approach this question. First, we consider the general form of the quadratic function, it is observed that has a y-intercept at the point \left(0, \ 2\right), so

                                            f(0) \ = \ -2 \\ \\ \\ f(0) \ = \ a(0)^{2} \ + \ b(0) + c \\ \\ \\ c = \ -2.

Additionally, it is pointed that two distinct points (-1, \ -3) and (-4, \ 6) lies on the quadratic graph, hence

                                       f(-1) \ = \ -3 \\ \\ \\ f(-1) \ = \ a(-1)^{2} \ + \ b(-1) \ -2 \\ \\ \\ \-\hspace{0.36cm} -3 \ = \ a \ - \ b \ -2 \\ \\ \\ \-\hspace{0.3} a \ - \ b \ = \ -1 \ \ \ \ \ \ $-----$ \ (1)

and

                                     \-\hspace{0.18cm}f(-4) \ = \ 6 \\ \\ \\ \-\hspace{0.18cm} f(-4) \ = \ a(-4)^{2} \ + \ b(-4) \ -2 \\ \\ \\ \-\hspace{0.97cm} 6 \ = \ 16a \ - \ 4b \ -2 \\ \\ \\ \-\hspace{0.98cm} 8 \ = \ 16a \ - \ 4b \\ \\ \\ 4a \ - \ b \ = \ 2 \ \ \ \ \ \ $-----$ \ (2).

Subtract equation (1) from equation (2) term-by-term,

                          \-\hspace{0.72cm} (4a \ - \ b) \ - \ (a \ - \ b) \ = \ 2 \ - \ (-1) \\ \\ \\ (4a \ - \ a) \ + \ \left[-b \ - \ (-b)\right] \ = \ 2 \ + \ 1 \\ \\ \\ \-\hspace{3.8cm} 3a \ = \ 3 \\ \\ \\ \-\hspace{4cm} a \ = \ 1

Substitute a \ = \ 1 into equation (1),

                                                 1 \ - \ b \ = \ -1 \\ \\ \\ \-\hspace{0.86cm} b \ = \ 2.

Therefore, the equation of the quadratic function is

                                               f(x) \ = \ x^2 \ + \ 2x \ -2.

\rule{12.5cm}{0.02cm}

Alternatively, the vertex of the quadratic function is given as the point (-1, \ -3), substitute these coordinates into the vertex form of a quadratic function.

                                            f(x) = a\left(x \ + \ 1\right)^{2} \ - \ 3.

Substitute the point (-4, \ 6) into the function above,

                                     f(-4) \ = \ 6 \\ \\ \\ f(-4) \ = \ a\left[(-4) \ + \ 1\right]^{2} \ - \ 3 \\ \\ \\ \-\hspace{0.75cm} 6 \ = \ a(-3)^{2} \ - \ 3 \\ \\ \\ \-\hspace{0.55cm} 9a \ = \ 9 \\ \\ \\ \-\hspace{0.75cm} a \ = \ 1.

Therefore, the general form of the quadratic function is

                                       f(x) \ = \ (x \ + \ 1)^{2} \ - \ 3 \\ \\ \\ f(x) \ = \ (x^2 \ + \ 2x \ + \ 1) \ - \ 3 \\ \\ \\ f(x) \ = \ x^2 \ + \ 2x \ - \ 2.

You might be interested in
For a science project, James needs to fill a tennis ball with sand but he doesn't know how much he will need. He measured the di
klio [65]
Do not go to that link it is a virus and if you go to “goggle” and press the camera icon on the top right and take a picture of the question you should get the answer there
8 0
2 years ago
Find the principal (positive) square root of 4. If necessary, round the answer to the nearest hundredth (two decimal places).
Lana71 [14]
The principal square root of 4 is 2
8 0
3 years ago
Suppose two angles are supplementary and one of them measures 31 degress what is the measure of the other angle
Nady [450]
Supplementary means it adds up to 180 degrees.
So if one side is 31 degrees, you would need to subtract that from 180 to find the other side.
-----------------------
180 - 31 = 149
-----------------------
The other angle would be 149 degrees.
6 0
3 years ago
Translate the equation using a variable.<br> "Nineteen less than one-half of a number is -13."
Illusion [34]

Answer:

1/2a-19=-13

Step-by-step explanation:

One half of a number represents the phrase "1/2a" (in this case the variable/number is 'a'". Then because it says "nineteen less than", that means you subtract 19 from one half of the variable.

3 0
3 years ago
Read 2 more answers
The area of a circle with radius 1 cm is ______________. (Use 3.14 for pi)
Tcecarenko [31]

Answer:

6,28

Step-by-step explanation:

NOT NEEDED FOR THIS QUESTION

7 0
2 years ago
Other questions:
  • Given that f(x) = x2 + 6x – 2, g(x) = x – 7, and h(x) = x + 4 find each function.
    6·1 answer
  • Buffy is purchasing a decorative ribbon in sections that each measure
    10·1 answer
  • what are the solutions of the equations x^2+14x=-130? (1point) a.2,-16 b.10,-13 c.-2,16 d.no solution
    14·1 answer
  • Find the sum: (3x2 + 5x − 8) + (5x2 − 13x − 5)
    10·2 answers
  • 15) Which coordinate pair identifies a point in Quadrant III of the coordinate plane?
    14·1 answer
  • Which circuit A or B, represents a series circuit?"<br><br> PLEASE HELP ILL MARK THE BRAINLY
    7·2 answers
  • What is the measure of angle 1? <br> 1)86<br> 2)88<br> 3)90<br> 4)92
    11·2 answers
  • Let a and b be real numbers where a ≠ b ≠ 0. Which of the following functions could represent the graph below?
    15·2 answers
  • 1. Una proposición que necesita ser demostrada y que cuya demostración consta de un conjunto de razonamientos se llama:
    15·2 answers
  • There are 5 boys and 10 girls in the glee club. Which ratio represents the number of boys in the club to the total number of stu
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!