1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Juli2301 [7.4K]
2 years ago
14

Find the equation of the quadratic function f whose graph is shown below.

Mathematics
1 answer:
Marianna [84]2 years ago
6 0

Step-by-step explanation:

A quadratic function is a second-degree polynomial function with the general form

                                          f(x) \ = \ ax^{2} \ + \ bx \ + \ c,

where a, b, and c are real numbers, and a \ \neq \ 0.

The standard form or the vertex form of a quadratic function is, however, a little different from the general form. To get the standard form from the general form, we need to use the "complete the square" method.

                          f(x) \ = \ ax^{2} \ + \ bx \ + \ c \\ \\ \\ f(x) \ = \ a\left(x^{2} \ + \ \displaystyle\frac{b}{a}x \right) \ + \ c \\ \\ \\ f(x) \ = \ a\left[x^{2} \ + \ \displaystyle\frac{b}{a}x \ + \ \left(\displaystyle\frac{b}{2a}\right)^{2} \ - \ \left(\displaystyle\frac{b}{2a}\right)^{2} \right] \ + \ c \\ \\ \\ f(x) \ = \ a\left[x^{2} \ + \ \displaystyle\frac{b}{a}x \ + \ \left(\displaystyle\frac{b}{2a}\right)^{2}\right] \ - \ a\left(\displaystyle\frac{b}{2a}\right)^{2} \ + \ c

                          f(x) \ = \ a\left(x \ + \ \displaystyle\frac{b}{2a}\right)^{2} \ + \ c \ - \ a\left(\displaystyle\frac{b^{2}}{4a^{2}}\right) \\ \\ \\ f(x) \ = \ a\left(x \ + \ \displaystyle\frac{b}{2a}\right)^{2} \ + \ c \ - \ \displaystyle\frac{b^{2}}{4a}

Let

                                         h \ = \ -\displaystyle\frac{b}{2a}     and     k \ = \ c \ - \ \displaystyle\frac{b^{2}}{4a},

then the expression reduces into

                                              f(x) \ = \ a \left(x \ - \ h\right)^{2} \ + \ k,

where the point (<em>h</em>, <em>k</em>) are the coordinates for the vertex of the quadratic function.

There are two different methods to approach this question. First, we consider the general form of the quadratic function, it is observed that has a y-intercept at the point \left(0, \ 2\right), so

                                            f(0) \ = \ -2 \\ \\ \\ f(0) \ = \ a(0)^{2} \ + \ b(0) + c \\ \\ \\ c = \ -2.

Additionally, it is pointed that two distinct points (-1, \ -3) and (-4, \ 6) lies on the quadratic graph, hence

                                       f(-1) \ = \ -3 \\ \\ \\ f(-1) \ = \ a(-1)^{2} \ + \ b(-1) \ -2 \\ \\ \\ \-\hspace{0.36cm} -3 \ = \ a \ - \ b \ -2 \\ \\ \\ \-\hspace{0.3} a \ - \ b \ = \ -1 \ \ \ \ \ \ $-----$ \ (1)

and

                                     \-\hspace{0.18cm}f(-4) \ = \ 6 \\ \\ \\ \-\hspace{0.18cm} f(-4) \ = \ a(-4)^{2} \ + \ b(-4) \ -2 \\ \\ \\ \-\hspace{0.97cm} 6 \ = \ 16a \ - \ 4b \ -2 \\ \\ \\ \-\hspace{0.98cm} 8 \ = \ 16a \ - \ 4b \\ \\ \\ 4a \ - \ b \ = \ 2 \ \ \ \ \ \ $-----$ \ (2).

Subtract equation (1) from equation (2) term-by-term,

                          \-\hspace{0.72cm} (4a \ - \ b) \ - \ (a \ - \ b) \ = \ 2 \ - \ (-1) \\ \\ \\ (4a \ - \ a) \ + \ \left[-b \ - \ (-b)\right] \ = \ 2 \ + \ 1 \\ \\ \\ \-\hspace{3.8cm} 3a \ = \ 3 \\ \\ \\ \-\hspace{4cm} a \ = \ 1

Substitute a \ = \ 1 into equation (1),

                                                 1 \ - \ b \ = \ -1 \\ \\ \\ \-\hspace{0.86cm} b \ = \ 2.

Therefore, the equation of the quadratic function is

                                               f(x) \ = \ x^2 \ + \ 2x \ -2.

\rule{12.5cm}{0.02cm}

Alternatively, the vertex of the quadratic function is given as the point (-1, \ -3), substitute these coordinates into the vertex form of a quadratic function.

                                            f(x) = a\left(x \ + \ 1\right)^{2} \ - \ 3.

Substitute the point (-4, \ 6) into the function above,

                                     f(-4) \ = \ 6 \\ \\ \\ f(-4) \ = \ a\left[(-4) \ + \ 1\right]^{2} \ - \ 3 \\ \\ \\ \-\hspace{0.75cm} 6 \ = \ a(-3)^{2} \ - \ 3 \\ \\ \\ \-\hspace{0.55cm} 9a \ = \ 9 \\ \\ \\ \-\hspace{0.75cm} a \ = \ 1.

Therefore, the general form of the quadratic function is

                                       f(x) \ = \ (x \ + \ 1)^{2} \ - \ 3 \\ \\ \\ f(x) \ = \ (x^2 \ + \ 2x \ + \ 1) \ - \ 3 \\ \\ \\ f(x) \ = \ x^2 \ + \ 2x \ - \ 2.

You might be interested in
Choose all the factors of 8. (Check all that apply.)
Oxana [17]

Answer:

Factors of 8 are 2,4 and 8.

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
ASAP answer it please.!!!!!!!!!!!!!!!!!!! thank uuu
masya89 [10]

Answer:

X=120 and y=10,z=120

Step-by-step explanation:

corresponding angles

thus 120=(13y-10)=x

3 0
3 years ago
How many intersections are there of the graphs of the equations below? 1/2 x + 5y = 6 3x + 30y = 36 none one two infinitely many
ryzh [129]
Once you graph the equation, you will notice that the lines are actually the exact same. If they’re the exact same your answer must be...
C. Infinitely Many
8 0
3 years ago
Read 2 more answers
3x²-24x + 12<br><br><br> What’s the factor of
Tems11 [23]

Answer:

<u>[x - (4 + 2√3)] and [x - (4 - 2√3)]</u>

Step-by-step explanation:

Given :

  • 3x² - 24x + 12

Divide throughout by 3 to simplify :

  • 1/3 x (3x² - 24x + 12)
  • x² - 8x + 4

Using the Quadratic Formula :

  • x = -b ± √b² - 4ac / 2a
  • x = -(-8) ± √(-8)² - 4(1)(4) / 2(1)
  • x = 8 ± √64 - 16 / 2
  • x = 8 ± √48 / 2
  • x = 8 ± 4√3 / 2
  • x = 4 ± 2√3

Factors are :

  • <u>[x - (4 + 2√3)] and [x - (4 - 2√3)]</u>
6 0
2 years ago
Read 2 more answers
Sherry just got a part time job working at a smoothie making shop. Sherry found out she will be making $350 in her paycheck that
liq [111]
Sherry will make 9,100 in 13 weeks
3 0
3 years ago
Read 2 more answers
Other questions:
  • A three-dimensional object may be built from two-dimensional objects<br> True or false
    6·2 answers
  • How would you solve the equation x-2=5 by graphing
    11·2 answers
  • I forgot to do slopes
    10·1 answer
  • The sum of two numbers is 15. four times the smaller number is 60 less than twice the larger number. what is the larger number?
    10·1 answer
  • How old am i if 500 reduced by 4 times my age is 184
    9·1 answer
  • I need help with both questions on the screen. if you can only answer one thats fine too!
    9·1 answer
  • Please help me I can't figure this out.
    5·1 answer
  • The figure is made up of two identical quarter circles and a rectangle. The length of the rectangle is 35 cm and its breadth is
    11·1 answer
  • Find angle A and angle B..​
    15·1 answer
  • What isle is the tattoo ink in walmart???
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!