1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Juli2301 [7.4K]
2 years ago
14

Find the equation of the quadratic function f whose graph is shown below.

Mathematics
1 answer:
Marianna [84]2 years ago
6 0

Step-by-step explanation:

A quadratic function is a second-degree polynomial function with the general form

                                          f(x) \ = \ ax^{2} \ + \ bx \ + \ c,

where a, b, and c are real numbers, and a \ \neq \ 0.

The standard form or the vertex form of a quadratic function is, however, a little different from the general form. To get the standard form from the general form, we need to use the "complete the square" method.

                          f(x) \ = \ ax^{2} \ + \ bx \ + \ c \\ \\ \\ f(x) \ = \ a\left(x^{2} \ + \ \displaystyle\frac{b}{a}x \right) \ + \ c \\ \\ \\ f(x) \ = \ a\left[x^{2} \ + \ \displaystyle\frac{b}{a}x \ + \ \left(\displaystyle\frac{b}{2a}\right)^{2} \ - \ \left(\displaystyle\frac{b}{2a}\right)^{2} \right] \ + \ c \\ \\ \\ f(x) \ = \ a\left[x^{2} \ + \ \displaystyle\frac{b}{a}x \ + \ \left(\displaystyle\frac{b}{2a}\right)^{2}\right] \ - \ a\left(\displaystyle\frac{b}{2a}\right)^{2} \ + \ c

                          f(x) \ = \ a\left(x \ + \ \displaystyle\frac{b}{2a}\right)^{2} \ + \ c \ - \ a\left(\displaystyle\frac{b^{2}}{4a^{2}}\right) \\ \\ \\ f(x) \ = \ a\left(x \ + \ \displaystyle\frac{b}{2a}\right)^{2} \ + \ c \ - \ \displaystyle\frac{b^{2}}{4a}

Let

                                         h \ = \ -\displaystyle\frac{b}{2a}     and     k \ = \ c \ - \ \displaystyle\frac{b^{2}}{4a},

then the expression reduces into

                                              f(x) \ = \ a \left(x \ - \ h\right)^{2} \ + \ k,

where the point (<em>h</em>, <em>k</em>) are the coordinates for the vertex of the quadratic function.

There are two different methods to approach this question. First, we consider the general form of the quadratic function, it is observed that has a y-intercept at the point \left(0, \ 2\right), so

                                            f(0) \ = \ -2 \\ \\ \\ f(0) \ = \ a(0)^{2} \ + \ b(0) + c \\ \\ \\ c = \ -2.

Additionally, it is pointed that two distinct points (-1, \ -3) and (-4, \ 6) lies on the quadratic graph, hence

                                       f(-1) \ = \ -3 \\ \\ \\ f(-1) \ = \ a(-1)^{2} \ + \ b(-1) \ -2 \\ \\ \\ \-\hspace{0.36cm} -3 \ = \ a \ - \ b \ -2 \\ \\ \\ \-\hspace{0.3} a \ - \ b \ = \ -1 \ \ \ \ \ \ $-----$ \ (1)

and

                                     \-\hspace{0.18cm}f(-4) \ = \ 6 \\ \\ \\ \-\hspace{0.18cm} f(-4) \ = \ a(-4)^{2} \ + \ b(-4) \ -2 \\ \\ \\ \-\hspace{0.97cm} 6 \ = \ 16a \ - \ 4b \ -2 \\ \\ \\ \-\hspace{0.98cm} 8 \ = \ 16a \ - \ 4b \\ \\ \\ 4a \ - \ b \ = \ 2 \ \ \ \ \ \ $-----$ \ (2).

Subtract equation (1) from equation (2) term-by-term,

                          \-\hspace{0.72cm} (4a \ - \ b) \ - \ (a \ - \ b) \ = \ 2 \ - \ (-1) \\ \\ \\ (4a \ - \ a) \ + \ \left[-b \ - \ (-b)\right] \ = \ 2 \ + \ 1 \\ \\ \\ \-\hspace{3.8cm} 3a \ = \ 3 \\ \\ \\ \-\hspace{4cm} a \ = \ 1

Substitute a \ = \ 1 into equation (1),

                                                 1 \ - \ b \ = \ -1 \\ \\ \\ \-\hspace{0.86cm} b \ = \ 2.

Therefore, the equation of the quadratic function is

                                               f(x) \ = \ x^2 \ + \ 2x \ -2.

\rule{12.5cm}{0.02cm}

Alternatively, the vertex of the quadratic function is given as the point (-1, \ -3), substitute these coordinates into the vertex form of a quadratic function.

                                            f(x) = a\left(x \ + \ 1\right)^{2} \ - \ 3.

Substitute the point (-4, \ 6) into the function above,

                                     f(-4) \ = \ 6 \\ \\ \\ f(-4) \ = \ a\left[(-4) \ + \ 1\right]^{2} \ - \ 3 \\ \\ \\ \-\hspace{0.75cm} 6 \ = \ a(-3)^{2} \ - \ 3 \\ \\ \\ \-\hspace{0.55cm} 9a \ = \ 9 \\ \\ \\ \-\hspace{0.75cm} a \ = \ 1.

Therefore, the general form of the quadratic function is

                                       f(x) \ = \ (x \ + \ 1)^{2} \ - \ 3 \\ \\ \\ f(x) \ = \ (x^2 \ + \ 2x \ + \ 1) \ - \ 3 \\ \\ \\ f(x) \ = \ x^2 \ + \ 2x \ - \ 2.

You might be interested in
ASAP 50 POINTS
____ [38]
-1 is thy answer..............
8 0
2 years ago
Read 2 more answers
What is the answer to #3?
Rudiy27
I believe the answer is the last option choice. 
6 0
3 years ago
Xin leans a 26-foot ladder against a wall so that it forms an angle of 78^{\circ} ∘ with the ground. What’s the horizontal dista
defon

The ladder and the wall it leans on are illustrations of right triangle

The horizontal distance from the base of the ladder is 5.41 feet

<h3>How to determine the horizontal distance?</h3>

The given parameters are:

Length (L) = 26 feet

Angle of elevation (θ) = 78 degrees

The horizontal distance (D) is calculated using the following cosine ratio

cos(θ) = D/L

Substitute known values

cos(78) = D/26

Make D the subject

D = 26 * cos(78)

Multiply

D = 5.41

Hence, the horizontal distance from the base of the ladder is 5.41 feet

Read more about right triangles at:

brainly.com/question/2437195

5 0
2 years ago
The current temperature is 20 degrees. This is 6 degrees less than twice the temperature that it was 6 hours ago. What was the t
mestny [16]
2x - 6 = 20
2x = 20 + 6
2x = 26
x = 26/2
x = 13 <==
5 0
3 years ago
Question 16 (Essay Worth 7 points)<br><br> Verify the identity.<br><br> tan (x + π/2) = -cot x
Rus_ich [418]

Step-by-step explanation:

We know that tan=sin/cos, so tan(x+π/2)=

\frac{sin(x+pi/2)}{cos(x+pi/2)}

Then, we know that sin(u+v)=sin(u)cos(v)+cos(u)sin(v),

so our equation is then

\frac{sin(x)cos(\pi/2)+cos(x)sin(\pi/2)}{cos(x+\pi/2)}  = \frac{cos(x)}{cos(x+\pi/2) }

Then, cos(u+v)=cos(u)cos(v)-sin(u)sin(v), so our expression is then

\frac{cos(x)}{cos(x)cos(\pi/2)-sin(x)sin(\pi/2)} = \frac{cos(x)}{-sin(x)} = -cot(x)

6 0
2 years ago
Other questions:
  • 2g to the second power divided by 4g
    8·1 answer
  • Find the height of a square pyramid that has a volume of 32 ft.³ in a base length of 4 feet
    6·1 answer
  • 49 can be expressed as the sum of first ------------ consecutive odd numbers<br> need fast
    12·1 answer
  • MJ attempted 50 baskets but only made 20 baskets.. What percentage of the shots did he make? Remember: part/total
    11·1 answer
  • A rectangular piece of paper with length 35 cm and a width 18 cm has two semicircles cut out of it as shown below
    9·1 answer
  • The perimeter of this shape is 92cm.<br> Find the value of x.<br> (x + 7)
    13·1 answer
  • A research firm needs to estimate within 3% the proportion of junior executives leaving large manufacturing companies within thr
    12·1 answer
  • Martha's bakery started with 200 cupcakes in the morning. After a busy afternoon there were only 60 cupcakes left. By what perce
    8·1 answer
  • A Bag contains 3 green marbles, 7 white marbles, and red marbles (and no other marbles). One marble is chosen without
    5·2 answers
  • A Ferris wheel at an amusement park is modeled by (x – 100)2 + (y – 75)2 = 4,900, where the measurements are in feet. A slingsho
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!