1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Juli2301 [7.4K]
3 years ago
14

Find the equation of the quadratic function f whose graph is shown below.

Mathematics
1 answer:
Marianna [84]3 years ago
6 0

Step-by-step explanation:

A quadratic function is a second-degree polynomial function with the general form

                                          f(x) \ = \ ax^{2} \ + \ bx \ + \ c,

where a, b, and c are real numbers, and a \ \neq \ 0.

The standard form or the vertex form of a quadratic function is, however, a little different from the general form. To get the standard form from the general form, we need to use the "complete the square" method.

                          f(x) \ = \ ax^{2} \ + \ bx \ + \ c \\ \\ \\ f(x) \ = \ a\left(x^{2} \ + \ \displaystyle\frac{b}{a}x \right) \ + \ c \\ \\ \\ f(x) \ = \ a\left[x^{2} \ + \ \displaystyle\frac{b}{a}x \ + \ \left(\displaystyle\frac{b}{2a}\right)^{2} \ - \ \left(\displaystyle\frac{b}{2a}\right)^{2} \right] \ + \ c \\ \\ \\ f(x) \ = \ a\left[x^{2} \ + \ \displaystyle\frac{b}{a}x \ + \ \left(\displaystyle\frac{b}{2a}\right)^{2}\right] \ - \ a\left(\displaystyle\frac{b}{2a}\right)^{2} \ + \ c

                          f(x) \ = \ a\left(x \ + \ \displaystyle\frac{b}{2a}\right)^{2} \ + \ c \ - \ a\left(\displaystyle\frac{b^{2}}{4a^{2}}\right) \\ \\ \\ f(x) \ = \ a\left(x \ + \ \displaystyle\frac{b}{2a}\right)^{2} \ + \ c \ - \ \displaystyle\frac{b^{2}}{4a}

Let

                                         h \ = \ -\displaystyle\frac{b}{2a}     and     k \ = \ c \ - \ \displaystyle\frac{b^{2}}{4a},

then the expression reduces into

                                              f(x) \ = \ a \left(x \ - \ h\right)^{2} \ + \ k,

where the point (<em>h</em>, <em>k</em>) are the coordinates for the vertex of the quadratic function.

There are two different methods to approach this question. First, we consider the general form of the quadratic function, it is observed that has a y-intercept at the point \left(0, \ 2\right), so

                                            f(0) \ = \ -2 \\ \\ \\ f(0) \ = \ a(0)^{2} \ + \ b(0) + c \\ \\ \\ c = \ -2.

Additionally, it is pointed that two distinct points (-1, \ -3) and (-4, \ 6) lies on the quadratic graph, hence

                                       f(-1) \ = \ -3 \\ \\ \\ f(-1) \ = \ a(-1)^{2} \ + \ b(-1) \ -2 \\ \\ \\ \-\hspace{0.36cm} -3 \ = \ a \ - \ b \ -2 \\ \\ \\ \-\hspace{0.3} a \ - \ b \ = \ -1 \ \ \ \ \ \ $-----$ \ (1)

and

                                     \-\hspace{0.18cm}f(-4) \ = \ 6 \\ \\ \\ \-\hspace{0.18cm} f(-4) \ = \ a(-4)^{2} \ + \ b(-4) \ -2 \\ \\ \\ \-\hspace{0.97cm} 6 \ = \ 16a \ - \ 4b \ -2 \\ \\ \\ \-\hspace{0.98cm} 8 \ = \ 16a \ - \ 4b \\ \\ \\ 4a \ - \ b \ = \ 2 \ \ \ \ \ \ $-----$ \ (2).

Subtract equation (1) from equation (2) term-by-term,

                          \-\hspace{0.72cm} (4a \ - \ b) \ - \ (a \ - \ b) \ = \ 2 \ - \ (-1) \\ \\ \\ (4a \ - \ a) \ + \ \left[-b \ - \ (-b)\right] \ = \ 2 \ + \ 1 \\ \\ \\ \-\hspace{3.8cm} 3a \ = \ 3 \\ \\ \\ \-\hspace{4cm} a \ = \ 1

Substitute a \ = \ 1 into equation (1),

                                                 1 \ - \ b \ = \ -1 \\ \\ \\ \-\hspace{0.86cm} b \ = \ 2.

Therefore, the equation of the quadratic function is

                                               f(x) \ = \ x^2 \ + \ 2x \ -2.

\rule{12.5cm}{0.02cm}

Alternatively, the vertex of the quadratic function is given as the point (-1, \ -3), substitute these coordinates into the vertex form of a quadratic function.

                                            f(x) = a\left(x \ + \ 1\right)^{2} \ - \ 3.

Substitute the point (-4, \ 6) into the function above,

                                     f(-4) \ = \ 6 \\ \\ \\ f(-4) \ = \ a\left[(-4) \ + \ 1\right]^{2} \ - \ 3 \\ \\ \\ \-\hspace{0.75cm} 6 \ = \ a(-3)^{2} \ - \ 3 \\ \\ \\ \-\hspace{0.55cm} 9a \ = \ 9 \\ \\ \\ \-\hspace{0.75cm} a \ = \ 1.

Therefore, the general form of the quadratic function is

                                       f(x) \ = \ (x \ + \ 1)^{2} \ - \ 3 \\ \\ \\ f(x) \ = \ (x^2 \ + \ 2x \ + \ 1) \ - \ 3 \\ \\ \\ f(x) \ = \ x^2 \ + \ 2x \ - \ 2.

You might be interested in
. X +7 x +3 multiply binomials
vaieri [72.5K]

Answer:

8x+3

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Suppose on a certain test, fifty students earn a perfect score and fifty students earn a zero. determine the mean grade and stan
kodGreya [7K]

Answer:

Mean=50.

standard deviation=50.

Step-by-step explanation:

Let the perfect score be 100.

The mean(average) of a data is given by: Mean=\frac{sum of data points}{number of data points}

Here the number of data points are 100. out of which 50 attains a value 100,and 50 attains value 0.

so, sum of data points=50×100+50×0=5000.

Mean=\frac{5000}{100}

Mean=50.

"Now the standard deviation of data points are calculated by firstly subtracting mean from every entry and then square the number and take it as new entry and calculate the mean of the new data entry and lastly taking the square root of this new mean".

Here if 50 is subtracted from each entry the new entry will have 50 entries as '50' and 50 entries as '-50'.

next on squaring we will have all the 100 entries as '2500'.

now the mean of these entries is: \frac{2500\times100}{100}

                                                         =2500

taking it's squareroot we have \sqrt{2500}=50

Hence, standard deviation=50.




5 0
4 years ago
Read 2 more answers
There should be 2 answers
Rudik [331]

|6m-2|=0\\\\\implies 6m-2 =0~~~~~~~~~~~~~;[\text{If}~ |x| = 0 ~\text{then}~ x = 0]\\\\\implies m = \dfrac 26 = \dfrac 13

4 0
2 years ago
ASAP PLEASE<br><br> What is the slope of the equation 2 y = 6 x - 8?
Effectus [21]

Answer:

3

Step-by-step explanation:

divide the equation by two

to make the equation equal to y

so y=(6x-8)/2

y=3x-4

y=mx+b

m=slope

b=y intercept

so 3=slope

Hope that helps :)

5 0
3 years ago
Determine all values of k for which the roots of the equation x^2-6x+k=0 are complex
MaRussiya [10]
Complex roots occur when b^2 - 4ac is negative.

So we have (-6)^2 - 4.1.k < 0
                      -4k < - 36
                       k > 9
6 0
3 years ago
Other questions:
  • You put $500 in an account that earns 4% annual interest. The interest earned each year is added to the principal to create a ne
    15·2 answers
  • Truncate the decimal expansion of 15 to find the best approximation. A) 2.4 &lt; 15 &lt; 2.5 B) 2.46 &lt; 15 &lt; 2.47 C) 2.46 &
    15·2 answers
  • If the area of a circle is 28.28 square in, then what is its radius? and show work
    5·2 answers
  • Help this is my last grade of the year and I need to do good
    14·1 answer
  • A restraunt charges a automatic 20% tip for groups of 6 or more. A group of 8 people had a bill of $187. How much was their tip?
    10·2 answers
  • Penelope and John are workers in a factory making widgets. Penelope can make 30 widgets per day in the factory. Penelope is able
    7·1 answer
  • The product of two irrational numbers is rational.
    14·1 answer
  • Plz help will be marked BRAINLIEST!!!
    10·2 answers
  • What is the solution of each equation?
    5·1 answer
  • find the volume of the cylinder with the same radius and double the height when the radius is 5 and the height is 2​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!