1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Juli2301 [7.4K]
3 years ago
14

Find the equation of the quadratic function f whose graph is shown below.

Mathematics
1 answer:
Marianna [84]3 years ago
6 0

Step-by-step explanation:

A quadratic function is a second-degree polynomial function with the general form

                                          f(x) \ = \ ax^{2} \ + \ bx \ + \ c,

where a, b, and c are real numbers, and a \ \neq \ 0.

The standard form or the vertex form of a quadratic function is, however, a little different from the general form. To get the standard form from the general form, we need to use the "complete the square" method.

                          f(x) \ = \ ax^{2} \ + \ bx \ + \ c \\ \\ \\ f(x) \ = \ a\left(x^{2} \ + \ \displaystyle\frac{b}{a}x \right) \ + \ c \\ \\ \\ f(x) \ = \ a\left[x^{2} \ + \ \displaystyle\frac{b}{a}x \ + \ \left(\displaystyle\frac{b}{2a}\right)^{2} \ - \ \left(\displaystyle\frac{b}{2a}\right)^{2} \right] \ + \ c \\ \\ \\ f(x) \ = \ a\left[x^{2} \ + \ \displaystyle\frac{b}{a}x \ + \ \left(\displaystyle\frac{b}{2a}\right)^{2}\right] \ - \ a\left(\displaystyle\frac{b}{2a}\right)^{2} \ + \ c

                          f(x) \ = \ a\left(x \ + \ \displaystyle\frac{b}{2a}\right)^{2} \ + \ c \ - \ a\left(\displaystyle\frac{b^{2}}{4a^{2}}\right) \\ \\ \\ f(x) \ = \ a\left(x \ + \ \displaystyle\frac{b}{2a}\right)^{2} \ + \ c \ - \ \displaystyle\frac{b^{2}}{4a}

Let

                                         h \ = \ -\displaystyle\frac{b}{2a}     and     k \ = \ c \ - \ \displaystyle\frac{b^{2}}{4a},

then the expression reduces into

                                              f(x) \ = \ a \left(x \ - \ h\right)^{2} \ + \ k,

where the point (<em>h</em>, <em>k</em>) are the coordinates for the vertex of the quadratic function.

There are two different methods to approach this question. First, we consider the general form of the quadratic function, it is observed that has a y-intercept at the point \left(0, \ 2\right), so

                                            f(0) \ = \ -2 \\ \\ \\ f(0) \ = \ a(0)^{2} \ + \ b(0) + c \\ \\ \\ c = \ -2.

Additionally, it is pointed that two distinct points (-1, \ -3) and (-4, \ 6) lies on the quadratic graph, hence

                                       f(-1) \ = \ -3 \\ \\ \\ f(-1) \ = \ a(-1)^{2} \ + \ b(-1) \ -2 \\ \\ \\ \-\hspace{0.36cm} -3 \ = \ a \ - \ b \ -2 \\ \\ \\ \-\hspace{0.3} a \ - \ b \ = \ -1 \ \ \ \ \ \ $-----$ \ (1)

and

                                     \-\hspace{0.18cm}f(-4) \ = \ 6 \\ \\ \\ \-\hspace{0.18cm} f(-4) \ = \ a(-4)^{2} \ + \ b(-4) \ -2 \\ \\ \\ \-\hspace{0.97cm} 6 \ = \ 16a \ - \ 4b \ -2 \\ \\ \\ \-\hspace{0.98cm} 8 \ = \ 16a \ - \ 4b \\ \\ \\ 4a \ - \ b \ = \ 2 \ \ \ \ \ \ $-----$ \ (2).

Subtract equation (1) from equation (2) term-by-term,

                          \-\hspace{0.72cm} (4a \ - \ b) \ - \ (a \ - \ b) \ = \ 2 \ - \ (-1) \\ \\ \\ (4a \ - \ a) \ + \ \left[-b \ - \ (-b)\right] \ = \ 2 \ + \ 1 \\ \\ \\ \-\hspace{3.8cm} 3a \ = \ 3 \\ \\ \\ \-\hspace{4cm} a \ = \ 1

Substitute a \ = \ 1 into equation (1),

                                                 1 \ - \ b \ = \ -1 \\ \\ \\ \-\hspace{0.86cm} b \ = \ 2.

Therefore, the equation of the quadratic function is

                                               f(x) \ = \ x^2 \ + \ 2x \ -2.

\rule{12.5cm}{0.02cm}

Alternatively, the vertex of the quadratic function is given as the point (-1, \ -3), substitute these coordinates into the vertex form of a quadratic function.

                                            f(x) = a\left(x \ + \ 1\right)^{2} \ - \ 3.

Substitute the point (-4, \ 6) into the function above,

                                     f(-4) \ = \ 6 \\ \\ \\ f(-4) \ = \ a\left[(-4) \ + \ 1\right]^{2} \ - \ 3 \\ \\ \\ \-\hspace{0.75cm} 6 \ = \ a(-3)^{2} \ - \ 3 \\ \\ \\ \-\hspace{0.55cm} 9a \ = \ 9 \\ \\ \\ \-\hspace{0.75cm} a \ = \ 1.

Therefore, the general form of the quadratic function is

                                       f(x) \ = \ (x \ + \ 1)^{2} \ - \ 3 \\ \\ \\ f(x) \ = \ (x^2 \ + \ 2x \ + \ 1) \ - \ 3 \\ \\ \\ f(x) \ = \ x^2 \ + \ 2x \ - \ 2.

You might be interested in
Consider this system of linear equations:
Vinil7 [7]

Answer:

m = -3 and b = 5

Step-by-step explanation:

y = -3x + 5

.......

8 0
3 years ago
I'm emptying this account my new account has 2352 points
Fofino [41]

Answer:

An offer is a sign of their willingness to agree on certain terms from one person to another. If there is an express or implied agreement, a contract will then be formed. A contract is said to come into being when the acceptance of an offer has been told to the offeror by the offeree.

Thanks dear__!!

7 0
3 years ago
Read 2 more answers
What is the result of an increase by 2/3
velikii [3]

Answer:

y=1.6 repeatin

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
PLEASE HELP ASAP!! THANKS SO MUCH
Wittaler [7]

Answer:

The relationship shows a direct linear variation with a constant of variation of 1.

Step-by-step explanation:

This is true because the slope of the equation is 1

4 0
3 years ago
Read 2 more answers
Find the product. 312 × 15 <br><br> A.4,680 <br> B.4,670<br> C. 1,872 <br> D.1,862
lana [24]

Answer:

A. 4,680

Step-by-step explanation:

312*15=4,680

7 0
3 years ago
Read 2 more answers
Other questions:
  • Solve the system of equations.
    13·2 answers
  • Solve 3x - x + 2 = 12
    15·1 answer
  • Is (4,-3) a solution to this system? 3x-3y=21 5x+4y=24
    9·2 answers
  • SCCoast, an Internet provider in the Southeast, developed the following frequency distribution on the age of Internet users. Fin
    10·1 answer
  • Gary ate 21/25 of his candy bar. What percent of the candy bar did Gary eat?
    6·2 answers
  • Write the equation of a line that is parallel to y = 1/2x - 4 and that passes through the point (9, -6)
    8·1 answer
  • Fahrenheit femperature can be obtained from Celsius (centigrade) temperature by multiplying by 1and adding 32 degrees What Fahre
    14·1 answer
  • On a 10 question exam each question is worth 10 points. how many ways can you make a 70%?
    14·1 answer
  • Suppose that z=6^500. Express the following in terms of z.
    8·1 answer
  • What is 34.982 + 45.8 + 3.4298=
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!