Answer:
17-18) Can you type out the questions for 17-19, I can't read them.
20) a. rational
21) d. 25 in^2
Answer:
1. D
2. 6<em>h</em>
3. not sure sorry
4. B
5. 10a
Step-by-step explanation:
Slope=(y2-y1)/(x2-x1)
=(4-7)/(2--3)
=3/5
Keywords
quadratic equation, discriminant, complex roots, real roots
we know that
The formula to calculate the <u>roots</u> of the <u>quadratic equation</u> of the form
is equal to

where
The <u>discriminant</u> of the <u>quadratic equation</u> is equal to

if
----> the <u>quadratic equation</u> has two <u>real roots</u>
if
----> the <u>quadratic equation</u> has one <u>real root</u>
if
----> the <u>quadratic equation</u> has two <u>complex roots</u>
in this problem we have that
the <u>discriminant</u> is equal to 
so
the <u>quadratic equation</u> has two <u>complex roots</u>
therefore
the answer is the option A
There are two complex roots
Answer:
g(0.9) ≈ -2.6
g(1.1) ≈ 0.6
For 1.1 the estimation is a bit too high and for 0.9 it is too low.
Step-by-step explanation:
For values of x near 1 we can estimate g(x) with t(x) = g'(1) (x-1) + g(1). Note that g'(1) = 1²+15 = 16, and for values near one g'(x) is increasing because x² is increasing for positive values. This means that the tangent line t(x) will be above the graph of g, and the estimates we will make are a bit too big for values at the right of 1, like 1.1, and they will be too low for values at the left like 0.9.
For 0.9, we estimate
g(0.9) ≈ 16* (-0.1) -1 = -2.6
g(1.1) ≈ 16* 0.1 -1 = 0.6