If we are comparing two different things to each other on Earth, they are pulled the same by gravity and so the one with more mass weighs more. But in space, where the pull of gravity is very small, something can have almost no weight. It still has matter in it, though, so it still has mass.
Answer:
Detail is given below.
Explanation:
Electron:
The electron is subatomic particle that revolve around outside the nucleus and has negligible mass. It has a negative charge.
Symbol= e-
Mass= 9.10938356×10-31 Kg
It was discovered by j. j. Thomson in 1897 during the study of cathode ray properties.
Neutron and proton:
While neutron and proton are present inside the nucleus. Proton has positive charge while neutron is electrically neutral. Proton is discovered by Rutherford while neutron is discovered by James Chadwick in 1932.
Symbol of proton= P+
Symbol of neutron= n0
Mass of proton=1.672623×10-27 Kg
Mass of neutron=1.674929×10-27 Kg
Location of electron, proton and neutron.
An atom consist of electron, protons and neutrons. Protons and neutrons are present with in nucleus while the electrons are present out side the nucleus.
All these three subatomic particles construct an atom. A neutral atom have equal number of proton and electron. In other words we can say that negative and positive charges are equal in magnitude and cancel the each other. For example if neutral atom of nitrogen have 7 protons than it must have 7 electrons. The sum of neutrons and protons is the mass number of an atom while the number of protons are number of electrons is the atomic number of an atom.
For example
Mass of nitrogen = number of neutron + number of proton
Mass of nitrogen = 7 + 7 = 14
Atomic number of nitrogen = number of electron or number of proton
Atomic number of nitrogen = 7
Answer:
Helium is in group 18 of the periodic table. How is helium different from the other elements in this group? = Helium atoms have 2 valence electrons, while atoms of the other elements in the group all have 8 valence electrons.
An emission spectrum will occur when = An electron releases energy and falls back to a lower energy level.
Explanation:
Conservation of mass is the underlying principle of balancing equation. When we balance equation, this means that we acknowledge that before and after the chemical reaction, the elements are conserved. To balance the chemical equation, we add coefficients before each reactant and product. Here are the following answers:
Reaction 1:
<span>2Al
3ZnCl2
3Zn
2AlCl3
Reaction 2:
</span><span>4NH3
3O2
2N2
6H2O</span>
<span>6.50x10^3 calories.
Now we have 4 pieces of data and want a single result. The data is:
Mass: 100.0 g
Starting temperature: 25.0°C
Ending temperature: 31.5°C
Specific heat: 1.00 cal/(g*°C)
And we want a result with the unit "cal". Now you need to figure out what set of math operations will give you the desired result. Turns out this is quite simple. First, you need to remember that you can only add or subtract things that have the same units. You may multiply or divide data items with different units and the units can combine or cancel each other. So let's solve this:
Let's start with specific heat with the unit "cal/(g*°C)". The cal is what we want, but we'ld like to get rid of the "/(g*°C)" part. So let's multiply by the mass:
1.00 cal/(g*°C) * 100.0 g = 100.0 cal/°C
We now have a simpler unit of "cal/°C", so we're getting closer. Just need to cancel out the "/°C" part, which we can do with a multiplication. But we have 2 pieces of data using "°C". We can't multiply both of them, that would give us "cal*°C" which we don't want. But we need to use both pieces. And since we're interested in the temperature change, let's subtract them. So
31.5°C - 25.0°C = 6.5°C
So we have a 6.5°C change in temperature. Now let's multiply:
6.5°C * 100.0 cal/°C = 6500.0 cal
Since we only have 3 significant digits in our least precise piece of data, we need to round the result to 3 significant figures. 6500 only has 2 significant digits, and 6500. has 4. But we can use scientific notation to express the result as 6.50x10^3 which has the desired 3 digits of significance. So the result is 6.50x10^3 calories.
Just remember to pay attention to the units in the data you have. They will pretty much tell you exactly what to add, subtract, multiply, or divide.</span>