N2<span> + 3H</span>2<span> = 2NH</span><span>3
so, NH3 = (N2 + 3H2)/ 2
= (28g + 3*25g)/2
= 51.5g</span>
The answer for the following problem is mentioned below.
Explanation:
Given:
mass of iron (m) = 15.75 grams
heat (q) = 1097 J
initial temperature (
) = 25°C
final temperature (
) = 177°C
To find:
specific heat (c)
We know;
c = q ÷ mΔT
where;
c represents the specific heat
q represents the heat
m represents the mass
t represents the temperature
c = 
c = 0.45 J/kg°C
<u><em>Therefore the specific heat capacity of iron is 0.45 J/kg°C.</em></u>
Answer:
The thermal energy (heat) needed, to raise the temperature of oil of mass 'm' kilogram and specific heat capacity 'c' from 20°C to 180°C is 160·m·c joules
Explanation:
The heat capacity, 'C', of a substance is the heat change, ΔQ, required by a given mass, 'm', of the substance to produce a unit temperature change, ΔT
∴ C = ΔQ/ΔT
ΔQ = C × ΔT
C = m × c
Where;
c = The specific heat capacity
ΔT = The temperature change = T₂ - T₁
∴ ΔQ = m × c × ΔT
Therefore, the thermal energy (heat) needed, ΔQ, to raise the temperature of oil of mass 'm' kilogram and specific heat capacity, 'c' from 20°C to 180°C is given as follows;
ΔQ = m × c × (180° - 20°) = 160° × m·c
ΔQ = 160·m·c joules
Hey there!
The correct answer should be B. Potential Energy Only
Potential energy is the energy stored in an object because it isn’t moving/isn’t in motion
Hope this helps you!
God bless ❤️
xXxGolferGirlxXx
The answer is B, distillation.
(You can see more details about distillation as well as other separation techniques on the document pdf titled Lab #2 Physical Separation Techniques by ccri.edu)