Answer:
i = 2.79
Explanation:
The excersise talks about the colligative property, freezing point depression.
Formula to calculate the freezing point of a solution is:
Freezing point of pure solvent - Freezing point of solution = m . Kf . i
Let's replace data given. (i = Van't Hoff factor, numbers of ions dissolved in solution)
48.1°C - 44°C = 0.15 m . 9.78°C/m . i
4.1°C / (0.15 m . 9.78°C/m) = i
i = 2.79
In this case, numbers of ions dissolved can decrease the freezing point of a solution, which is always lower than pure solvent.
Answer:
There are 5 significant digits in 0.23100.
Explanation:
This is because all non-zero digits are considered significant and zeros after decimal points are considered significant.
Answer:
You would need 8 eight packs of water
Explanation:
32 x 2 (seeing as this is the amount of water each person consumes)
= 64 divided by 8 (the amount of water in each pack)
= 8 eight packs of water
Answer:
222.30 L
Explanation:
We'll begin by calculating the number of mole in 100 g of ammonia (NH₃). This can be obtained as follow:
Mass of NH₃ = 100 g
Molar mass of NH₃ = 14 + (3×1)
= 14 + 3
= 17 g/mol
Mole of NH₃ =?
Mole = mass /molar mass
Mole of NH₃ = 100 / 17
Mole of NH₃ = 5.88 moles
Next, we shall determine the number of mole of Hydrogen needed to produce 5.88 moles of NH₃. This can be obtained as follow:
N₂ + 3H₂ —> 2NH₃
From the balanced equation above,
3 moles of H₂ reacted to produce 2 moles NH₃.
Therefore, Xmol of H₂ is required to p 5.88 moles of NH₃ i.e
Xmol of H₂ = (3 × 5.88)/2
Xmol of H₂ = 8.82 moles
Finally, we shall determine the volume (in litre) of Hydrogen needed to produce 100 g (i.e 5.88 moles) of NH₃. This can be obtained as follow:
Pressure (P) = 95 KPa
Temperature (T) = 15 °C = 15 + 273 = 288 K
Number of mole of H₂ (n) = 8.82 moles
Gas constant (R) = 8.314 KPa.L/Kmol
Volume (V) =?
PV = nRT
95 × V = 8.82 × 8.314 × 288
95 × V = 21118.89024
Divide both side by 95
V = 21118.89024 / 95
V = 222.30 L
Thus the volume of Hydrogen needed for the reaction is 222.30 L
Answer:
Mar 29, 2015 · Their settlements are much more permanent and include houses, storage buildings, etc. They also need preservation methods and storage techniques, unlike the nomads. Sedentary Societies were first to be seen near waterways such as rivers.
Explanation: