The grams of Fe₂O₃ that are formed is 47.68 g
<u><em>calculation</em></u>
Step 1: write the equation for reaction
4 Fe +3O₂ → 2 Fe₂O₃
Step 2: find the moles of Fe
moles = mass÷ molar mass
= 33.4 g÷55.8 g/mol =0.5986 moles
Step 3 : use the mole ratio to determine the moles of Fe₂O₃
That is from equation above Fe:Fe₂O₃ is 4:2 therefore the moles of Fe₂O₃ is = 0.5986 moles x 2/4 =0.2993 moles
Step 4 : find the mass of Fe₂O₃
mass = mass x molar mass
The molar mass of Fe₂O₃ = (55.8 x 2 +(15.9 x3) = 159.3 g/mol
mass is therefore = 0.2993 moles x 159.3 g/mol =47.68 g
Answer:
The outer shell
Explanation:
I am not completely sure what you are looking for but an atom's valence electrons are the outer shell in a Bohr model.
Not sure about the number of significant figures; you can decide where to round, but I would probably say 0.075mol.
<em>Answer:</em>
<em>B.) A hot liquid or air that expands, becomes less dense, and rises or becomes more dense and sinks.</em>
<em>Explanation:</em>
<em>Convention is the movement caused within a fluid by the tendency of hotter and therefore less dense material to rise, and colder, denser material to sink under the influence of gravity, which consequently results in transfer of heat.</em>
Atoms, the main constituents of matter, consist of positively charged protons and neutral neutrons within a nucleus which are surrounded by a sea of electrons that sit in distinct shells. The electrons on the outer shell are known as valence electrons. The valence can be descibed as the smaller number of electrons an atom has to borrow or to lend, the greater the activity.
The answer is B.