When there isn't enough oxygen for Oxidative Phosphorylation to occur, anaerobic respiration occurs. You can't produce ATP across the inner of the mitochondrial membrane or in the Krebs cycle if you don't have Oxidative Phosphorylation. As a result, the yeast employs anaerobic respiration to keep Glycolysis running, resulting in 4 ATP molecules (Net: 2) each Glucose molecule that is converted to Pyruvate.
Allowing NADH to lose hydrogen allows it to be converted to NAD, which can then be utilized to oxidize glucose to pyruvate, which produces ATP, and so on. This is best illustrated in a diagram, in my opinion.
Answer:
pH = 11.3
Explanation:
From the question given above, the following data were obtained:
Concentration of hydronium ion [H₃O⁺] = 4.950×10¯¹² M
pH =.?
The pH of a solution is defined by the following equation:
pH = –Log [H₃O⁺]
Thus, with the above formula, we can obtain the pH of the solution as follow:
Concentration of hydronium ion [H₃O⁺] = 4.950×10¯¹² M
pH =.?
pH = –Log [H₃O⁺]
pH = –Log 4.950×10¯¹²
pH = 11.3
I think it's 65.3342 grams
Balanced chemical equation: S(s) + O₂(g) → SO₂(g).
Sulfur change oxidation number from 0 to +4 (oxidation) and oxygen change oxidation number from 0 to -2 (reduction).
Sulfur dioxide (SO₂) is very common volcanic gas.
Fossil fuel combustion increases the acidity of rain because the sulfur dioxide is produced.
Because of fuel combustion, sulfur dioxide goes up into the atmosphere as the hot gases rise, than it reacts with water and oxygen in the air and form sulfuric acid.