Answer:
-5.14 for sam
-18.01% for dave
Explanation:
We first calculate for Sam
R = 7.3%
We have 2% increase
= 9.3%
We calculate for present value of coupon and present value at maturity using the formula for present value in the attachment
To get C
1000 x 0.073/2
= 36.5
time= 3 years x 2 times payment = 6
Ytm = rate = 9.3%/2 = 0.0465
Putting values into the formula
36.5[1-(1+0.0465)^-6/0.0465]
= 36.5(1-0.7613/0.0465)
36.5(0.2385/0.0465)
= 36.5 x 5.129
Present value of coupon = 187.20
We solve for maturity
M = 1000
T = 6 months
R = 0.0465
1000/(1+0.0465)⁶
= 1000/1.3135
Present value = 761.32
We add up the value of present value at maturity and that at coupon
761.32 + 187.20
= $948.52
Change in % = 948.52/1000 - 1
= -0.05148
= -5.14 for sam
We calculate for Dave
He has 20 years and payment is two times yearly
= 20x2 = 40
36.5 [1-(1+0.0465)^-40/0.0465]
Present value = 36.5 x 18.014
= 657.511
At maturity,
Present value = 1000/(1+0.0465)⁴⁰
= 1000/6.1598
= 162.34
We add up these present values
= 657.511+162.34 = $819.851
Change = 819.851/1000 -1
= -0.1801
= -18.01%
The results are inconclusive; Therefore a generalization cannot be made regarding which option is selected more often.
What is generalization and why is it important?
The ability to carry out a task, engage in an activity, or exhibit behavior in many contexts, with various people, and at various times is known as generalization. We have "generalized" the necessary skills, which explains why we can carry out routine tasks in a range of contexts and settings.
How can generalization be improved?
Using a network that is just big enough to achieve a good fit is one way to enhance network generalization. The ability of a network to perform more complicated functions increases with network size. The network won't have the strength to overfit the data if it is tiny enough.
Learn more about network size: brainly.com/question/1825455
#SPJ4
Depends on the banks policy. My bank is pretty good, and with my opt in overdraft protection, there are no incurred fees.