1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sonja [21]
2 years ago
11

Both Rachel and Dominique throw tennis balls into the air. At any time, t, the height, h, of Rachel’s ball is modeled by the equ

ation h = –16t2 30t 5. Dominique throws his tennis ball with the same acceleration, a, from the same initial height, mc028-1. Jpg, but with an initial velocity, v, double that of Rachel’s. Which equation best models the height of Dominique’s tennis ball? h(t) = at2 vt h0 h = –16t2 30t 10 h = –32t2 60t 10 h = –32t2 30t 5 h = –16t2 60t 5.
Mathematics
1 answer:
WITCHER [35]2 years ago
5 0
67t I know it’s right because I got it right in my test
You might be interested in
Which inequality is shown in this graph? (0, 2) (-1,-2)
Juli2301 [7.4K]

Answer:

D) y = 4x + 2

Step-by-step explanation:

<u><em>Explanation</em></u>:-

Given ( 0, 2) ( -1 , -2 )

Given in equalities     y = 4x + 2

    put point  (0,2)  in equation y = 4x +2

                                                 2 = 4(0) +2

                                                2 = 2

Therefore satisfies the point (0,2) equation   y = 4x +2

 put point  (-1,-2)  in equation y = 4x +2

                                               -2 = 4(-1)+2

                                              -2  = -2

Therefore satisfies the point (-1,-2) equation   y = 4x +2

6 0
3 years ago
Simplify this expression.<br><br> 7+12÷(−3)<br><br> 3<br><br> 7<br><br> 11<br><br> 12
amm1812

Hi there!  

»»————- ★ ————-««

I believe your answer is:  

3

»»————- ★ ————-««  

Here’s why:  

⸻⸻⸻⸻

7 + \frac{12}{-3}\\-----------\\\\\rightarrow \frac{12}{-3} = -4\\\\\rightarrow 7 + - 4\\\\\rightarrow \boxed{3}

⸻⸻⸻⸻

»»————- ★ ————-««  

Hope this helps you. I apologize if it’s incorrect.  

5 0
3 years ago
What is 8,624 divided by 98
zzz [600]
The answer is 88 when you divide 8,624 by 98:)
5 0
3 years ago
The diagonal of a screen is 152 cm the length measures 132 cm what is the height
Setler [38]
You will have to use a^2+b^2=c^2 Place the 152 where c is and place 132 in place of a. Then solve for B. I hope this helps.
5 0
4 years ago
SOLVE. integration of (1+v^2) /(1-v^3)
s2008m [1.1K]
\displaystyle\int\frac{1+v^2}{1-v^3}\,\mathrm dv

1-v^3=(1-v)(1+v+v^2)
\implies\dfrac{1+v^2}{1-v^3}=\dfrac a{1-v}+\dfrac{b_0+b_1v}{1+v+v^2}
\implies\dfrac{1+v^2}{1-v^3}=\dfrac{a(1+v+v^2)+(b_0+b_1v)(1-v)}{1-v^3}
\implies 1+v^2=(a+b_0)+(a-b_0+b_1)v+(a-b_1)v^2
\implies\begin{cases}a+b_0=1\\a-b_0+b_1=0\\a-b_1=1\end{cases}\implies a=\dfrac23,b_0=\dfrac13,b_1=-\dfrac13

So,

\displaystyle\int\frac{1+v^2}{1-v^3}\,\mathrm dv=\dfrac23\int\frac{\mathrm dv}{1-v}+\dfrac13\int\frac{1-v}{1+v+v^2}\,\mathrm dv

The first integral is easy. For the second, since the derivative of the denominator is (1+v+v^2)=1+2v, we can add and subtract 3v to get

\dfrac{1-v}{1+v+v^2}=\dfrac{1+2v-3v}{1+v+v^2}=\dfrac{1+2v}{1+v+v^2}-\dfrac{3v}{1+v+v^2}

and for the first term employ a substitution. For the remaining term, we can complete the square in the denominator, then use a trigonometric substitution:

\displaystyle\int\frac{1+2v}{1+v+v^2}\,\mathrm dv=\int\frac{\mathrm dt}t

where t=1+v+v^2\implies\mathrm dt=(1+2v)\,\mathrm dv, and

\displaystyle\int\frac{3v}{1+v+v^2}\,\mathrm dv=3\int\frac v{\left(v+\frac12\right)^2+\frac34}\,\mathrm dv

Then taking v+\dfrac12=\dfrac{\sqrt3}2\tan s\implies \mathrm dv=\dfrac{\sqrt3}2\sec^2s\,\mathrm ds gives

\displaystyle3\int\frac v{\left(v+\frac12\right)^2+\frac34}\,\mathrm dv=3\int\frac{\frac{\sqrt3}2\tan s-\frac12}{\left(\frac{\sqrt3}2\tan s\right)^2+\frac34}\left(\frac{\sqrt3}2\sec^2s\right)\,\mathrm ds
=\displaystyle\sqrt3\int(\sqrt3\tan s-1)\,\mathrm ds
=\displaystyle3\int\tan s\,\mathrm ds-\sqrt3\int\mathrm ds

Now we're ready to wrap up.

\displaystyle\int\frac{1+v^2}{1-v^3}\,\mathrm dv=\dfrac23\int\frac{\mathrm dv}{1-v}+\dfrac13\int\frac{1-v}{1+v+v^2}\,\mathrm dv
=\displaystyle-\frac23\ln|1-v|+\frac13\left(\int\frac{1+2v}{1+v+v^2}\,\mathrm dv-\int\frac{3v}{1+v+v^2}\,\mathrm dv\right)
=\displaystyle-\frac23\ln|1-v|+\frac13\int\frac{\mathrm dt}t-\frac13\left(3\int\tan s\,\mathrm ds-\sqrt3\int\mathrm ds\right)
=\displaystyle-\frac23\ln|1-v|+\frac13\ln|t|-\int\tan s\,\mathrm ds+\frac1{\sqrt3}\int\mathrm ds
=\displaystyle-\frac23\ln|1-v|+\frac13\ln|1+v+v^2|+\ln|\cos s|+\frac s{\sqrt3}+C
=\displaystyle-\frac23\ln|1-v|+\frac13\ln|1+v+v^2|+\ln\left|\frac{\sqrt3}{2\sqrt{1+v+v^2}}\right|+\frac1{\sqrt3}\tan^{-1}\frac{2v+1}{\sqrt3}+C

This can be simplified a bit using some properties of logarithms to obtain

=\displaystyle-\frac23\ln|1-v|+\frac13\ln(1+v+v^2)+\left(\ln\frac{\sqrt3}2-\frac12\ln(1+v+v^2)\right)+\frac1{\sqrt3}\tan^{-1}\frac{2v+1}{\sqrt3}+C
=\displaystyle-\frac23\ln|1-v|-\frac16\ln(1+v+v^2)+\frac1{\sqrt3}\tan^{-1}\frac{2v+1}{\sqrt3}+C
6 0
3 years ago
Other questions:
  • Five more than the product of a number and 4 is equal to 8
    12·1 answer
  • Name this line in 3 ways
    14·1 answer
  • What exponential function represents the data in the table?
    8·2 answers
  • Whos the first president of the united states
    6·2 answers
  • When a boy pulls his sled with a rope, the rope makes an angle of 70 with the horizontal. If a pull of 16 pounds on the rope is
    10·1 answer
  • If three points lie on the same line, they are collinear.
    11·2 answers
  • Write an equation to represent the sequence<br> 19, 38, 57, 76,95 ...
    9·1 answer
  • 7xy2-343x<br>factorize the expression​
    6·1 answer
  • A standard fire hose is 50 feet long. What is the length of the hose in yards and feet?
    8·2 answers
  • La temperatura de un congelador bajó de 3 °C a −9 °C en 3 horas. Si la temperatura del congelador bajó en la misma cantidad de g
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!