Answer:
a₈ = - 10935
Step-by-step explanation:
the nth term of a geometric sequence is
= a₁ ![(r)^{n-1}](https://tex.z-dn.net/?f=%28r%29%5E%7Bn-1%7D)
where a₁ is the first term and r the common ratio
here a₁ = 5 and r =
=
= - 3 , then
a₈ = 5 ×
= 5 × - 2187 = - 10935
The inequality is still true! If you add a number, say 5 to both sides of the following inequality, does anything change?
3 < 6
3 + 5 < 6 + 5
8 < 11
The inequality is still true. We know the statement holds for subtracting the same number because, in a way, addition and subtraction are pretty much the same operation. If I subtract 5 from both sides, I can think of it like "I add negative 5 to both sides" or something along those lines. It's kind of backwards thinking.
Answer:
45 degrees for 8
135 degrees for 9
48 for 10
Yes a square is a rectangle
Next ones.
Sut = 21 becuase x=5
7
Step-by-step explanation:
Last one:
x^2 + 8 = 3x + 36
- 8 - 8
x^2 = 3x + 28
-3x -3x
x^2 - 3x = 28
(x · x) - 3x = 28.
This was were a little guess work was used,
I found that any number lower than 7 is less than 28 when pluged into x and any above is higher.
Hence x = 7
So
x^2 + 8 = 7^2 + 8
7 x 7 = 49. 49 + 8 = 57.
and
3x+36 = 7 x 3 + 36
7x3 = 21. 21 + 36 = 57.
Both lines are equal so x is indeed 7.
The RSTU rectangle
3x+6 = 5x-4
+4 +4
3x+10 = 5x
-3x -3x
10 = 2x
10/2 = 5
5 = x or x = 5
plug it in now
3 x 5 = 15. 15 + 6 = 21
and
5 x 5 = 25. 25 - 4 = 21
so x = 5
8-10
QRS = 45 degrees because bisects the square with a diagonal line from corner to corner
PTQ is a 135 degrees because it is wider than a 90 degrees angle and meets both upper corner from the middle of the square making it 135 degrees.
SQ = 48 because RT = 24 and RT is half the length of SQ meaning its length would be 48
Or
SQ= 24 degrees because RT = 24 and if RT was to continue on the line it is on it will reach the length of SQ.
Don’t Identify- 278.98
Female- 450.66
Male- 343.36
Considering these are people, you probably will need to round either up or down. If you round it would be:
Don’t Identify- 279
Female- 451
Male- 343