1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
egoroff_w [7]
2 years ago
7

A triangle has two sides of length 2 and 18. What is the largest possible whole-number length for the third side?

Mathematics
1 answer:
Snezhnost [94]2 years ago
6 0

Answer:

19

Step-by-step explanation:

Given 2 sides of a triangle then the third side x is

difference of 2 sides < x < sum of 2 sides , that is

18 - 2 < x < 18 + 2

16 < x < 20

Then the largest possible length of the third side is 19

You might be interested in
____ regular polygons are symmetrical.
Zielflug [23.3K]
D, all apply
You can cut all in half and they will be equal
4 0
3 years ago
Read 2 more answers
HELP AGAIN!!! Plzzzzz thank you!!!
never [62]
Absolute value of -1/3 is 1/3
6 0
3 years ago
The ratio of the sales of Amazing Apple to Crazy Coconut is 1:6 and the ratio of sales of Brilliant Banana to Crazy Coconut is 2
elena55 [62]

Answer:

my answer in the paper

don't forgotten for press "love"

5 0
3 years ago
Read 2 more answers
If
baherus [9]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: cos 330 = \frac{\sqrt3}{2}

Use the Double-Angle Identity: cos 2A = 2 cos² A - 1

\text{Scratchwork:}\quad \bigg(\dfrac{\sqrt3 + 2}{2\sqrt2}\bigg)^2 = \dfrac{2\sqrt3 + 4}{8}

Proof LHS → RHS:

LHS                          cos 165

Double-Angle:        cos (2 · 165) = 2 cos² 165 - 1

                             ⇒ cos 330 = 2 cos² 165 - 1

                             ⇒ 2 cos² 165  = cos 330 + 1

Given:                        2 \cos^2 165  = \dfrac{\sqrt3}{2} + 1

                              \rightarrow 2 \cos^2 165  = \dfrac{\sqrt3}{2} + \dfrac{2}{2}

Divide by 2:               \cos^2 165  = \dfrac{\sqrt3+2}{4}

                             \rightarrow \cos^2 165  = \bigg(\dfrac{2}{2}\bigg)\dfrac{\sqrt3+2}{4}

                             \rightarrow \cos^2 165  = \dfrac{2\sqrt3+4}{8}

Square root:             \sqrt{\cos^2 165}  = \sqrt{\dfrac{4+2\sqrt3}{8}}

Scratchwork:            \cos^2 165  = \bigg(\dfrac{\sqrt3+1}{2\sqrt2}\bigg)^2

                             \rightarrow \cos 165  = \pm \dfrac{\sqrt3+1}{2\sqrt2}

             Since cos 165 is in the 2nd Quadrant, the sign is NEGATIVE

                             \rightarrow \cos 165  = - \dfrac{\sqrt3+1}{2\sqrt2}

LHS = RHS \checkmark

4 0
3 years ago
Find the length od ypx. Leave your answer in terms of pi
Liono4ka [1.6K]

your answer is

b = 15 pi

length of ypx = circumfrance of circle - 1/4 of circumfrance of circle

= 2pi r - 2pi r/4 = 6 pi r / 4 = 3 pi r / 2

= 3 pi × 10/2 = 15 pi

5 0
3 years ago
Read 2 more answers
Other questions:
  • Solve (x) F(x)=x^2+3x-2
    9·1 answer
  • HELP PLEASE I NEED IT ASAP
    14·1 answer
  • If-2a &gt; 6, then<br> -a&gt;3<br> -a&lt;3<br> -a&lt;-3<br> -a&gt;-3
    8·1 answer
  • Complete the sentence. The midpoint between 2 and 10 is .
    11·1 answer
  • Evaluate the summation
    14·2 answers
  • A ball is thrown from an initial height of 3 feet with an initial upward velocity of 17 ft/s. The ball's height h (in feet) afte
    9·1 answer
  • Cheryl writes 7 fewer posts than Kevin on a social media site.
    12·1 answer
  • What is 2x – 4 = 2? Please answer soon!
    9·2 answers
  • Answer this question please
    7·1 answer
  • What would be the awnsers
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!