Answer:
number 1 is c number 2 is b,c,e number 3 is b
Step-by-step explanation:
1: if you see something to the power you will always think of repeated multiplication off the bat. so you just multiply the coefficient by the amount of the exponent.
2: 1*1*1*1*1*1*1*1*1*1*1*1*1*1*1*1=1 no
2*2*2*2=16 yes
4*4=16 yes
8*8=64 no
16=16 yes
3: 3/4*3/4*3/4=27/64
hope this helps! have a nice day!
Answer:
Step-by-step explanation:
The missing length is 13 because,
Lets say the top triangle is A and the bottom triangle is B.
Triangle A gives us the side GF, and Triangle B gives us the sides TU and ST. Since the triangles are similar(as stated in the problem), we can pair 2 sides GF(A) and TU(B) which is 11:22.(one way I usually figure which sides are similar is by first- matching the hypotenuse, then checking which of the remaining two is longer.. if that made any sense). You can see that their relationship is x2 or /2 (In another word, from A to B is multiplication- ex: 11 * 2 is 22, and from B to A is division- ex 22/2 is 11.) Since the missing number is the hypotenuse of triangle A and you know the Hypotenuse of triangle B all you have to do is divide side TS by 2 to get side SF. So the missing side is 13.
Answer: 13
3e-1.5f-.375 is the answer.
I took this test the other day I put figure 2 and I got it right
a.
The polynomial w^2+18w+84 cannot be factored
The perfect square trinomial is w^2+18w + 81
----------
The reason the original can't be factored is that solving w^2+18w+84=0 leads to no real solutions. Use the quadratic formula to see this. The graph of y = x^2+18x+84 shows there are no x intercepts. A solution and an x intercept are basically the same. The x intercept visually represents the solution.
w^2+18w+81 factors to (w+9)^2 which is the same as (w+9)(w+9). We can note that w^2+18w+81 is in the form a^2+2ab+b^2 with a = w and b = 9
================================================
b.
The polynomial y^2-10y+23 cannot be factored
The perfect square trinomial is y^2-10y + 25
---------
Using the quadratic formula, y^2-10y+23 = 0 has no rational solutions. The two irrational solutions mean that we can't factor over the rationals. Put another way, there are no two whole numbers such that they multiply to 23 and add to -10 at the same time.
If we want to complete the square for y^2-10y, we take half of the -10 to get -5, then square this to get 25. Therefore, y^2-10y+25 is a perfect square and it factors to (y-5)^2 or (y-5)(y-5)