Answer:56
Step-by-step explanation:
We already have the lengths of the given sides:
5+7=12
12+5=17
17+5=22
22+11=33
33+7=40
40+(5+11)=56
Answer:
5a plus 5 minus 3a is equal 13
Step-by-step explanation:
Answer:
y(s) = 
we will compare the denominator to the form 

comparing coefficients of terms in s
1
s: -2a = -10
a = -2/-10
a = 1/5
constant: 

hence the first answers are:
a = 1/5 = 0.2
β = 5.09
Given that y(s) = 
we insert the values of a and β
= 
to obtain the constants A and B we equate the numerators and we substituting s = 0.2 on both side to eliminate A
5(0.2)-53 = A(0.2-0.2) + B((0.2-0.2)²+5.09²)
-52 = B(26)
B = -52/26 = -2
to get A lets substitute s=0.4
5(0.4)-53 = A(0.4-0.2) + (-2)((0.4 - 0.2)²+5.09²)
-51 = 0.2A - 52.08
0.2A = -51 + 52.08
A = -1.08/0.2 = 5.4
<em>the constants are</em>
<em>a = 0.2</em>
<em>β = 5.09</em>
<em>A = 5.4</em>
<em>B = -2</em>
<em></em>
Step-by-step explanation:
- since the denominator has a complex root we compare with the standard form

- Expand and compare coefficients to obtain the values of a and <em>β </em>as shown above
- substitute the values gotten into the function
- Now assume any value for 's' but the assumption should be guided to eliminate an unknown, just as we've use s=0.2 above to eliminate A
- after obtaining the first constant, substitute the value back into the function and obtain the second just as we've shown clearly above
Thanks...
Answer: QN = 12
Step-by-step explanation: This quadrilateral is a paralelogram because its 2 opposite sides (NP and MQ) are parallel and the other 2 (MN and PQ) are congruent.
In paralelogram, diagonals bisect each other, which means QR = RN.
If QR = RN:
QR = 6
Then,
QN = QR + RN
QN = 6 + 6
QN = 12
<u>The diagonal QN of quadrilateral MNPQ is </u><u>QN = 12</u><u>.</u>
Answer:
35
Step-by-step explanation:

Solving this ^^ would equal t=35.