Answer:
b = 18
Step-by-step explanation:
From an external point, the products of distances to the near circle intercept and the far circle intercept are the same. For a tangent, such as AC, point A is both the near and far intercept point, so that product is the square of the length of AC.
(AC)² = (CG)(CV)
b² = 12·27 = 324 . . . . substitute known values
b = √324 . . . . . . . . . . take the square root
b = 18
Answer:
cos(a + b) = 
Step-by-step explanation:
cos(a + b) = cos(a).cos(b) - sin(a).sin(b) [Identity]
cos(a) = 
cos(b) = 
Since, terminal side of angle 'a' lies in quadrant 3, sine of angle 'a' will be negative.
sin(a) =
[Since, sin(a) =
]
= 
= 
Similarly, terminal side of angle 'b' lies in quadrant 2, sine of angle 'b' will be negative.
sin(b) =
= 
= 
By substituting these values in the identity,
cos(a + b) = 
= 
= 
= 
Therefore, cos(a + b) = 
Here is your answer:
2×2=4
3×2=6
+
5×1=5
6×1=6
4+5=9
9÷3=3
6÷3=2
Your answer is...
=3/2
Answer:
no
Step-by-step explanation: