1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
melisa1 [442]
2 years ago
7

A. 2 (2)(3)(3)(a)(a)(a)(a)(a)(a)(a)(a)3(3)(5)(5)(a)(a)

Mathematics
2 answers:
marishachu [46]2 years ago
8 0

Answer:

  • E. 2/5 a³

Step-by-step explanation:

  • \sqrt{36a^8/225a^2} =                       simplify
  • \sqrt{4a^6/25} =                              square root
  • 2/5 a³

Also possible option is B if 4a⁶/25 is under root

Serjik [45]2 years ago
8 0

Step-by-step explanation:

√(36a⁸/225a²)

=> 6/9√(a⁸/a²)

If option B is 6/25√(a⁸/a²)

Otherwise

=> √(36a⁸/225a²)

=> √(36a⁶/225)

=> 6a³/15

=> 2/5a³

You might be interested in
F(1) = -16<br> so<br> f(n) = f(n − 1).<br> NH<br> f(3) =<br> Evaluate sequence in recursive form
gogolik [260]
Of I don’t know sorry about that
5 0
3 years ago
Solve for x. (16x + 23)°
erma4kov [3.2K]
16x +23
-16 -16
X = 7....................
6 0
3 years ago
NEED HELP!!!!!!!!!!!
lina2011 [118]

Answer:

6

Step-by-step explanation:

do you want an explanation?

btw, plz brainliest :)

4 0
3 years ago
Prove that: (b²-c²/a)CosA+(c²-a²/b)CosB+(a²-b²/c)CosC = 0​
IRISSAK [1]

<u>Prove that:</u>

\:\:\sf\:\:\left(\dfrac{b^2-c^2}{a}\right)\cos A+\left(\dfrac{c^2-a^2}{b}\right)\cos B +\left(\dfrac{a^2-b^2}{c}\right)\cos C=0

<u>Proof: </u>

We know that, by Law of Cosines,

  • \sf \cos A=\dfrac{b^2+c^2-a^2}{2bc}
  • \sf \cos B=\dfrac{c^2+a^2-b^2}{2ca}
  • \sf \cos C=\dfrac{a^2+b^2-c^2}{2ab}

<u>Taking</u><u> </u><u>LHS</u>

\left(\dfrac{b^2-c^2}{a}\right)\cos A+\left(\dfrac{c^2-a^2}{b}\right)\cos B +\left(\dfrac{a^2-b^2}{c}\right)\cos C

<em>Substituting</em> the value of <em>cos A, cos B and cos C,</em>

\longmapsto\left(\dfrac{b^2-c^2}{a}\right)\left(\dfrac{b^2+c^2-a^2}{2bc}\right)+\left(\dfrac{c^2-a^2}{b}\right)\left(\dfrac{c^2+a^2-b^2}{2ca}\right)+\left(\dfrac{a^2-b^2}{c}\right)\left(\dfrac{a^2+b^2-c^2}{2ab}\right)

\longmapsto\left(\dfrac{(b^2-c^2)(b^2+c^2-a^2)}{2abc}\right)+\left(\dfrac{(c^2-a^2)(c^2+a^2-b^2)}{2abc}\right)+\left(\dfrac{(a^2-b^2)(a^2+b^2-c^2)}{2abc}\right)

\longmapsto\left(\dfrac{(b^2-c^2)(b^2+c^2)-(b^2-c^2)(a^2)}{2abc}\right)+\left(\dfrac{(c^2-a^2)(c^2+a^2)-(c^2-a^2)(b^2)}{2abc}\right)+\left(\dfrac{(a^2-b^2)(a^2+b^2)-(a^2-b^2)(c^2)}{2abc}\right)

\longmapsto\left(\dfrac{(b^4-c^4)-(a^2b^2-a^2c^2)}{2abc}\right)+\left(\dfrac{(c^4-a^4)-(b^2c^2-a^2b^2)}{2abc}\right)+\left(\dfrac{(a^4-b^4)-(a^2c^2-b^2c^2)}{2abc}\right)

\longmapsto\dfrac{b^4-c^4-a^2b^2+a^2c^2}{2abc}+\dfrac{c^4-a^4-b^2c^2+a^2b^2}{2abc}+\dfrac{a^4-b^4-a^2c^2+b^2c^2}{2abc}

<em>On combining the fractions,</em>

\longmapsto\dfrac{(b^4-c^4-a^2b^2+a^2c^2)+(c^4-a^4-b^2c^2+a^2b^2)+(a^4-b^4-a^2c^2+b^2c^2)}{2abc}

\longmapsto\dfrac{b^4-c^4-a^2b^2+a^2c^2+c^4-a^4-b^2c^2+a^2b^2+a^4-b^4-a^2c^2+b^2c^2}{2abc}

<em>Regrouping the terms,</em>

\longmapsto\dfrac{(a^4-a^4)+(b^4-b^4)+(c^4-c^4)+(a^2b^2-a^2b^2)+(b^2c^2-b^2c^2)+(a^2c^2-a^2c^2)}{2abc}

\longmapsto\dfrac{(0)+(0)+(0)+(0)+(0)+(0)}{2abc}

\longmapsto\dfrac{0}{2abc}

\longmapsto\bf 0=RHS

LHS = RHS proved.

7 0
3 years ago
Evaluate z^2−3 z+4 , when z=−4
Maru [420]

Answer:

8

Step-by-step explanation:

=z²-3z+4 when z is 4

=4²-3(4)+4

=16-12+4

=8

6 0
3 years ago
Read 2 more answers
Other questions:
  • The size of a TV is measured by its diagonal. You want to buy a TV that has a 32-inch screen and a height of 15.7 inches. What i
    15·2 answers
  • The area of a rectangle is 1,357 square feet. The length is 59 feet. What is the width?
    7·2 answers
  • Negative 12 plus 44<br> negative 19 plus 61
    6·2 answers
  • Inverse Functions (please help)
    9·1 answer
  • 87°
    15·1 answer
  • Evaluate the problem <br>​
    12·2 answers
  • James has a mass of 32.8 kg. Ricardo's mass is 8 3/4 kg more than James's. Winthorp's mass is 3.6 kg less than Ricardo's. What i
    6·1 answer
  • West Jones bought markers for their teachers' dry erase boards. They bought 822 items in all. Each eraser cost $1.50 and each ma
    14·1 answer
  • Wht are y'all doing<br>​
    13·1 answer
  • A bee colony produced 5.9 pounds of honey, but bears ate 1.5 pounds of it. How much honey remains?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!