1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NNADVOKAT [17]
3 years ago
11

Hey Guys!

Mathematics
1 answer:
sergiy2304 [10]3 years ago
5 0

Use the multinomial theorem to compute some polynomial expansions:

(a + b + c)² = a² + b² + c² + 2 (ab + ac + bc)

(a + b + c)³ = a³ + b³ + c³

… … … … … … + 3 (a²b + a²c + ab² + b²c + ac² + bc²)

… … … … … … + 6 abc

(a + b + c)⁴ = a⁴ + b⁴ + c⁴

… … … … … … + 4 (a³b + a³c + ab³ + b³c + ac³ + bc³)

… … … … … … + 6 (a²b² + a²c² + b²c²)

… … … … … … + 12 (a²bc + ab²c + abc²)

Now, given that

a + b + c = 4

a² + b² + c² = 10

it follows that

ab + ac + bc = (4² - 10)/2 = 3

We use this result to simplify the extra terms in the 3rd-degree expansion.

a²b + a²c + ab² + b²c + ac² + bc²

= a (ab + ac) + b (ab + bc) + c (ac + bc)

= a (ab + ac + <u>bc</u>) + b (ab + <u>ac</u> + bc) + c (<u>ab</u> + ac + bc) - 3<u>abc</u>

… … I underline the terms that are added and subtracted … …

= (a + b + c) (ab + ac + <u>bc</u>) - 3abc

= 4 • 3 - 3abc

= 12 - 3abc

Given that

a³ + b³ + c³ = 22

this tells us that

4³ = 22 + 3 (12 - 3abc) + 6abc

4³ = 58 - 3abc

and so

abc = (4³ - 58)/(-3) = -2

from which it follows that

a²b + a²c + ab² + b²c + ac² + bc² = 12 - 3 • (-2) = 18

Now we similarly simplify the extra terms in the 4th-degree expansion.

a³b + a³c + ab³ + b³c + ac³ + bc³

= a² (ab + ac) + b² (ab + bc) + c² (ac + bc)

= a² (ab + ac + <u>bc</u>) + b² (ab + <u>ac</u> + bc) + c² (<u>ab</u> + ac + bc) - <u>a²bc</u> - <u>ab²c</u> - <u>abc²</u>

= (a² + b² + c²) (ab + ac + bc) - (a²bc + ab²c + abc²)

= 10 • 3 - (a²bc + ab²c + abc²)

which means

4⁴ = a⁴ + b⁴ + c⁴

… … … … … … + 4 (30 - a²bc - ab²c - abc²)

… … … … … … + 6 (a²b² + a²c² + b²c²)

… … … … … … + 12 (a²bc + ab²c + abc²)

reduces to

136 = a⁴ + b⁴ + c⁴

… … … … … … + 6 (a²b² + a²c² + b²c²)

… … … … … … + 8 (a²bc + ab²c + abc²)

Now, we know a + b + c = 4 and abc = -2, so we have

a²bc + ab²c + abc² = abc (a + b + c) = -2 • 4 = -8

and so

136 = a⁴ + b⁴ + c⁴ + 6 (a²b² + a²c² + b²c²) + 8 • (-8)

200 = a⁴ + b⁴ + c⁴ + 6 (a²b² + a²c² + b²c²)

Finally, we know that ab + ac + bc = 3. Squaring this gives

(ab + ac + bc)² = 3²

a²b² + a²c² + b²c² + 2 (a²bc + ab²c + abc²) = 9

but we also know that a²bc + ab²c + abc² = -8, so

a²b² + a²c² + b²c² + 2 • (-8) = 9

a²b² + a²c² + b²c² = 25

Therefore, we end up with

200 = a⁴ + b⁴ + c⁴ + 6 • 25

⇒   [[[   a⁴ + b⁴ + c⁴ = 50   ]]

You might be interested in
Question: (Graph attached below)
antoniya [11.8K]

16 I just know that it's 16 GL to ya

6 0
3 years ago
Read 2 more answers
Solve for b in the literal equation a b = c.
Evgesh-ka [11]

Answer:

b = \frac{c}{a}\\

Step-by-step explanation:

divide both sides by a

OR

bring the a over to the other side and put it under the c as the opposite of times is divide

7 0
3 years ago
I am very confused on what they are asking may you please help me
Akimi4 [234]
$133.5 dollars i think
7 0
3 years ago
Read 2 more answers
What is f(5) if f(1) = 3. 2 and f(x 1) = Five-halves(f(x))?
stealth61 [152]

Function assign value from one set to another. The value of f(5), if f(1) = 3.2 and f(x+1) = Five-halves(f(x)) is 125.

<h3>What is Function?</h3>

A function assigns the value of each element of one set to the other specific element of another set.

As it is given the value of the function f(1) is 3.2, while the value of f(x+1) is f(x+1) = \dfrac{5}{2}[f(x)], therefore, in order to find the value of f(5), we need to calculate the value of f(4).

f(2)

f(x+1) = \dfrac{5}{2}[f(x)]\\\\f(2)=f(1+1) = \dfrac{5}{2}[f(1)]\\\\f(2) = 2.5 \times 3.2\\\\f(2) = 8

f(3)

f(x+1) = \dfrac{5}{2}[f(x)]\\\\f(3)=f(2+1) = \dfrac{5}{2}[f(2)]\\\\f(3) = 2.5 \times 8\\\\f(3) = 20

f(4)

f(x+1) = \dfrac{5}{2}[f(x)]\\\\f(4)=f(3+1) = \dfrac{5}{2}[f(3)]\\\\f(4) = 2.5 \times 20\\\\f(4) = 50

f(5)

f(x+1) = \dfrac{5}{2}[f(x)]\\\\f(5)=f(4+1) = \dfrac{5}{2}[f(4)]\\\\f(5) = 2.5 \times 50\\\\f(5) = 125

Hence, the value of f(5), if f(1) = 3. 2 and f(x+1) = Five-halves(f(x)) is 125.

Learn more about Function:

brainly.com/question/5245372

8 0
2 years ago
Read 2 more answers
What’s the equation of the blue line?
victus00 [196]

Uee two points on the line to find the slope.

(-1,2) and (1,-4)

Slope = change in y over change in x;

Slope = (-4  - 2)/ (1 - -1) = (-6/2) = -3/1 = -3

The y intercept is y value where the blue line crosses the y axis, which is at -1

The equation would be y = -3x-1

4 0
2 years ago
Read 2 more answers
Other questions:
  • Elapsed time 9 3/4 hours end time 6:00 p.m. what is the start time
    6·1 answer
  • An angle measures 15 degrees more than its complement. Find the measures of the two angles
    6·1 answer
  • What is the value of the expression (3/7)(-2/5 •9/11)
    14·1 answer
  • (18x-44 )(8x-10) (13y-38) geometry
    9·1 answer
  • Hello im new could you help
    13·2 answers
  • Help! im stuck on part B!
    5·1 answer
  • Find the answer please
    7·1 answer
  • Write the equation of the
    11·1 answer
  • If a test is worth 90 points and I got 12/15 questions right then what would my grade be?
    13·1 answer
  • What is the sum?<br><img src="https://tex.z-dn.net/?f=%20%5Cbinom%7B3%7D%7B5%7D%20%20%2B%20%20%5Cbinom%7B1%7D%7B5%7D%20" id="Tex
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!