1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NNADVOKAT [17]
2 years ago
11

Hey Guys!

Mathematics
1 answer:
sergiy2304 [10]2 years ago
5 0

Use the multinomial theorem to compute some polynomial expansions:

(a + b + c)² = a² + b² + c² + 2 (ab + ac + bc)

(a + b + c)³ = a³ + b³ + c³

… … … … … … + 3 (a²b + a²c + ab² + b²c + ac² + bc²)

… … … … … … + 6 abc

(a + b + c)⁴ = a⁴ + b⁴ + c⁴

… … … … … … + 4 (a³b + a³c + ab³ + b³c + ac³ + bc³)

… … … … … … + 6 (a²b² + a²c² + b²c²)

… … … … … … + 12 (a²bc + ab²c + abc²)

Now, given that

a + b + c = 4

a² + b² + c² = 10

it follows that

ab + ac + bc = (4² - 10)/2 = 3

We use this result to simplify the extra terms in the 3rd-degree expansion.

a²b + a²c + ab² + b²c + ac² + bc²

= a (ab + ac) + b (ab + bc) + c (ac + bc)

= a (ab + ac + <u>bc</u>) + b (ab + <u>ac</u> + bc) + c (<u>ab</u> + ac + bc) - 3<u>abc</u>

… … I underline the terms that are added and subtracted … …

= (a + b + c) (ab + ac + <u>bc</u>) - 3abc

= 4 • 3 - 3abc

= 12 - 3abc

Given that

a³ + b³ + c³ = 22

this tells us that

4³ = 22 + 3 (12 - 3abc) + 6abc

4³ = 58 - 3abc

and so

abc = (4³ - 58)/(-3) = -2

from which it follows that

a²b + a²c + ab² + b²c + ac² + bc² = 12 - 3 • (-2) = 18

Now we similarly simplify the extra terms in the 4th-degree expansion.

a³b + a³c + ab³ + b³c + ac³ + bc³

= a² (ab + ac) + b² (ab + bc) + c² (ac + bc)

= a² (ab + ac + <u>bc</u>) + b² (ab + <u>ac</u> + bc) + c² (<u>ab</u> + ac + bc) - <u>a²bc</u> - <u>ab²c</u> - <u>abc²</u>

= (a² + b² + c²) (ab + ac + bc) - (a²bc + ab²c + abc²)

= 10 • 3 - (a²bc + ab²c + abc²)

which means

4⁴ = a⁴ + b⁴ + c⁴

… … … … … … + 4 (30 - a²bc - ab²c - abc²)

… … … … … … + 6 (a²b² + a²c² + b²c²)

… … … … … … + 12 (a²bc + ab²c + abc²)

reduces to

136 = a⁴ + b⁴ + c⁴

… … … … … … + 6 (a²b² + a²c² + b²c²)

… … … … … … + 8 (a²bc + ab²c + abc²)

Now, we know a + b + c = 4 and abc = -2, so we have

a²bc + ab²c + abc² = abc (a + b + c) = -2 • 4 = -8

and so

136 = a⁴ + b⁴ + c⁴ + 6 (a²b² + a²c² + b²c²) + 8 • (-8)

200 = a⁴ + b⁴ + c⁴ + 6 (a²b² + a²c² + b²c²)

Finally, we know that ab + ac + bc = 3. Squaring this gives

(ab + ac + bc)² = 3²

a²b² + a²c² + b²c² + 2 (a²bc + ab²c + abc²) = 9

but we also know that a²bc + ab²c + abc² = -8, so

a²b² + a²c² + b²c² + 2 • (-8) = 9

a²b² + a²c² + b²c² = 25

Therefore, we end up with

200 = a⁴ + b⁴ + c⁴ + 6 • 25

⇒   [[[   a⁴ + b⁴ + c⁴ = 50   ]]

You might be interested in
Ill Give out brainlyist only if you get the questions right, if you don't, you get reported
il63 [147K]

Answer:

▪︎ The Bengals scored 21 points per game.

▪︎ $20

5 0
2 years ago
What does the underlined conjunction connect in the sentence? The family enjoyed fishing, but they loved hiking during their tri
pychu [463]
The answer is c objects
4 0
3 years ago
What is the equation, in slope-intercept form, of the line parallel to y = 5x+2 that passes through the point (-2, 1)?
o-na [289]
Y=5x+11 using the point-slope formula and simplifying
4 0
2 years ago
Match each set of vertices with the type of triangle they form.
Andrew [12]

Answer:  The calculations are done below.


Step-by-step explanation:

(i) Let the vertices be A(2,0), B(3,2) and C(5,1). Then,

AB=\sqrt{(2-3)^2+(0-2)^2}=\sqrt{5},\\\\BC=\sqrt{(3-5)^2+(2-1)^2}=\sqrt{5},\\\\CA=\sqrt{(5-2)^2+(1-0)^2}=\sqrt{10}.

Since, AB = BC and AB² + BC² = CA², so triangle ABC here will be an isosceles right-angled triangle.

(ii) Let the vertices be A(4,2), B(6,2) and C(5,3.73). Then,

AB=\sqrt{(4-6)^2+(2-2)^2}=\sqrt{4}=2,\\\\BC=\sqrt{(6-5)^2+(2-3.73)^2}=\sqrt{14.3729},\\\\CA=\sqrt{(5-4)^2+(3.73-2)^2}=\sqrt{14.3729}.

Since, BC = CA, so the triangle ABC will be an isosceles triangle.

(iii) Let the vertices be A(-5,2), B(-4,4) and C(-2,2). Then,

AB=\sqrt{(-5+4)^2+(2-4)^2}=\sqrt{5},\\\\BC=\sqrt{(-4+2)^2+(4-2)^2}=\sqrt{8},\\\\CA=\sqrt{(-2+5)^2+(2-2)^2}=\sqrt{9}.

Since, AB ≠ BC ≠ CA, so this will be an acute scalene triangle, because all the angles are acute.

(iv) Let the vertices be A(-3,1), B(-3,4) and C(-1,1). Then,

AB=\sqrt{(-3+3)^2+(1-4)^2}=\sqrt{9}=3,\\\\BC=\sqrt{(-3+1)^2+(4-1)^2}=\sqrt{13},\\\\CA=\sqrt{(-1+3)^2+(1-1)^2}=\sqrt 4.

Since AB² + CA² = BC², so this will be a right angled triangle.

(v) Let the vertices be A(-4,2), B(-2,4) and C(-1,4). Then,

AB=\sqrt{(-4+2)^2+(2-4)^2}=\sqrt{8},\\\\BC=\sqrt{(-2+1)^2+(4-4)^2}=\sqrt{1}=1,\\\\CA=\sqrt{(-1+4)^2+(4-2)^2}=\sqrt{13}.

Since AB ≠ BC ≠ CA, and so this will be an obtuse scalene triangle, because one angle that is opposite to CA will be obtuse.

Thus, the match is done.

4 0
3 years ago
Read 2 more answers
(1×10,000)+(3×100)+(5×10)+(9× 1/10 )+(8× 1/100 ​ ) as a decimal number.
Fed [463]

Answer:

10350.98

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • Y=2x+8 and y= -2/3x. Identify the value of x that simultaneously satisfies both equations.
    13·1 answer
  • How many times can 8 go into 329
    13·2 answers
  • WILL GIVE BRAINLIEST PLEASE HELP<br> Write the equation and show work. Find 'x" and ' TK'
    10·1 answer
  • What is the lowest value of the range of the function
    12·1 answer
  • Can someone please solve these problems for me if you could do step by step that would rlly help me this is due Feb 14, 2021 ple
    10·1 answer
  • Question number eight answer
    12·1 answer
  • Mike walked 5/8 of the way to school before it started raining. How many percent of the trip did he get before it rained?
    5·2 answers
  • Please help if you are an expert or ace or whatever in math I need answers to these questions please!
    14·1 answer
  • If the tax on a $25 shirt is 10%, what would the final cost be?
    14·1 answer
  • Find the zero(s) of the polynomial function f(x) = x2 - 36.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!