Answer:
The answer is below
Step-by-step explanation:
The linear model represents the height, f(x), of a water balloon thrown off the roof of a building over time, x, measured in seconds: A linear model with ordered pairs at 0, 60 and 2, 75 and 4, 75 and 6, 40 and 8, 20 and 10, 0 and 12, 0 and 14, 0. The x axis is labeled Time in seconds, and the y axis is labeled Height in feet. Part A: During what interval(s) of the domain is the water balloon's height increasing? (2 points) Part B: During what interval(s) of the domain is the water balloon's height staying the same? (2 points) Part C: During what interval(s) of the domain is the water balloon's height decreasing the fastest? Use complete sentences to support your answer. (3 points) Part D: Use the constraints of the real-world situation to predict the height of the water balloon at 16 seconds.
Answer:
Part A:
Between 0 and 2 seconds, the height of the balloon increases from 60 feet to 75 feet at a rate of 7.5 ft/s
Part B:
Between 2 and 4 seconds, the height stays constant at 75 feet.
Part C:
Between 4 and 6 seconds, the height of the balloon decreases from 75 feet to 40 feet at a rate of -17.5 ft/s
Between 6 and 8 seconds, the height of the balloon decreases from 40 feet to 20 feet at a rate of -10 ft/s
Between 8 and 10 seconds, the height of the balloon decreases from 20 feet to 0 feet at a rate of -10 ft/s
Hence it fastest decreasing rate is -17.5 ft/s which is between 4 to 6 seconds.
Part D:
From 10 seconds, the balloon is at the ground (0 feet), it continues to remain at 0 feet even at 16 seconds.
Answer:
hour= 1.25
MINUTES ANSWER= 75 minutes
Step-by-step explanation:
hope that helps>3
Answer:
72 yd / min
Step-by-step explanation:
The first thing is to fully calculate the distance traveled, each lap is 200 yards and how 6 laps would be:
200 * 6 = 1200
Now, let's divide the race into how the statement tells us:
1200 * 2/3 = 800
1200 * 1/3 = 400
That is, in the first 800 yards it goes to 80 yd / min and then in the remaining 400 yards it goes to 60 yd / min, let's calculate the time Rhea lasted:
800/80 = 10 min
400/60 = 6,667 min
Which means that in total it would be:
10 + 6,667 = 16,667
In other words, Rhea took 16,667 minutes to travel 1,200 yards, so the speed would be:
1200 / 16,667 = 72
Therefore the average Rhea speed was 72 yd / min
Answer:
The answer is in the attachment!
Step-by-step explanation:
Answer:
Step-by-step explanation:
XYZ
The first one
I hope I helped you.