Answer:
7.625
Step-by-step explanation:
Answer: d
Step-by-step explanation: when you bring 3 into the square root, it becomes isqrt(63). when you apply i, it makes the number sqrt(-63)
pretty sure I did it right this time
Answer:

Step-by-step explanation:
To obtain the result of a fractions multiplication we need to multiply both numerators and the divide by the multiplication of the denomitators. In general, given a,b,c,d real numbers with b and d not zero, we have that

Substituting a,b,c and d for 8,15,2 and 13 we obtain that

Answer: Hello there!
this type of equations in one dimension (when all the factors are constants) are written as:
h = initial position + initial velocity*t + (acceleration/2)*t^2
First, let's describe the hunter's equation:
We know that Graham moves with a velocity of 1.5 ft/s, and when he is 18 ft above the ground, Hunter throws the ball, and because Graham is pulled with a cable, he is not affected by gravity.
If we define t= 0 when Graham is 18 ft above the ground, the equation for Graham height (in feet) is:
h = 18 + 1.5t
where t in seconds.
Now, the equation for the ball:
We know that at t= 0, the ball is thrown from an initial distance of 5ft, with an initial velocity of 24ft/s and is affected by gravity acceleration g, where g is equal to: 32.2 ft/s (notice that the gravity pulls the ball downwards, so it will have a negative sign)
the equation for the ball is:
h = 5 + 24t - (32.2/2)t^2 = 5 + 24t - 16.1t^2
So the system is:
h = 18 + 1.5t
h = 5 +24t - 16.1t^2
so the right answer is A
![\bf \begin{cases} x=1\implies &x-1=0\\ x=1\implies &x-1=0\\ x=-\frac{1}{2}\implies 2x=-1\implies &2x+1=0\\ x=2+i\implies &x-2-i=0\\ x=2-i\implies &x-2+i=0 \end{cases} \\\\\\ (x-1)(x-1)(2x+1)(x-2-i)(x-2+i)=\stackrel{original~polynomial}{0} \\\\\\ (x-1)^2(2x+1)~\stackrel{\textit{difference of squares}}{[(x-2)-(i)][(x-2)+(i)]}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%0Ax%3D1%5Cimplies%20%26x-1%3D0%5C%5C%0Ax%3D1%5Cimplies%20%26x-1%3D0%5C%5C%0Ax%3D-%5Cfrac%7B1%7D%7B2%7D%5Cimplies%202x%3D-1%5Cimplies%20%262x%2B1%3D0%5C%5C%0Ax%3D2%2Bi%5Cimplies%20%26x-2-i%3D0%5C%5C%0Ax%3D2-i%5Cimplies%20%26x-2%2Bi%3D0%0A%5Cend%7Bcases%7D%0A%5C%5C%5C%5C%5C%5C%0A%28x-1%29%28x-1%29%282x%2B1%29%28x-2-i%29%28x-2%2Bi%29%3D%5Cstackrel%7Boriginal~polynomial%7D%7B0%7D%0A%5C%5C%5C%5C%5C%5C%0A%28x-1%29%5E2%282x%2B1%29~%5Cstackrel%7B%5Ctextit%7Bdifference%20of%20squares%7D%7D%7B%5B%28x-2%29-%28i%29%5D%5B%28x-2%29%2B%28i%29%5D%7D)
![\bf (x^2-2x+1)(2x+1)~[(x-2)^2-(i)^2] \\\\\\ (x^2-2x+1)(2x+1)~[(x^2-4x+4)-(-1)] \\\\\\ (x^2-2x+1)(2x+1)~[(x^2-4x+4)+1] \\\\\\ (x^2-2x+1)(2x+1)~[x^2-4x+5] \\\\\\ (x^2-2x+1)(2x+1)(x^2-4x+5)](https://tex.z-dn.net/?f=%5Cbf%20%28x%5E2-2x%2B1%29%282x%2B1%29~%5B%28x-2%29%5E2-%28i%29%5E2%5D%0A%5C%5C%5C%5C%5C%5C%0A%28x%5E2-2x%2B1%29%282x%2B1%29~%5B%28x%5E2-4x%2B4%29-%28-1%29%5D%0A%5C%5C%5C%5C%5C%5C%0A%28x%5E2-2x%2B1%29%282x%2B1%29~%5B%28x%5E2-4x%2B4%29%2B1%5D%0A%5C%5C%5C%5C%5C%5C%0A%28x%5E2-2x%2B1%29%282x%2B1%29~%5Bx%5E2-4x%2B5%5D%0A%5C%5C%5C%5C%5C%5C%0A%28x%5E2-2x%2B1%29%282x%2B1%29%28x%5E2-4x%2B5%29)
of course, you can always use (x-1)(x-1)(2x+1)(x²-4x+5) as well.