Given : tan 235 = 2 tan 20 + tan 215
To Find : prove that
Solution:
tan 235 = 2 tan 20 + tan 215
Tan x = Tan (180 + x)
tan 235 = tan ( 180 + 55) = tan55
tan 215 = tan (180 + 35) = tan 35
=> tan 55 = 2tan 20 + tan 35
55 = 20 + 35
=> 20 = 55 - 35
taking Tan both sides
=> Tan 20 = Tan ( 55 - 35)
=> Tan 20 = (Tan55 - Tan35) /(1 + Tan55 . Tan35)
Tan35 = Cot55 = 1/tan55 => Tan55 . Tan35 =1
=> Tan 20 = (Tan 55 - Tan 35) /(1 + 1)
=> Tan 20 = (Tan 55 - Tan 35) /2
=> 2 Tan 20 = Tan 55 - Tan 35
=> 2 Tan 20 + Tan 35 = Tan 55
=> tan 55 = 2tan 20 + tan 35
=> tan 235 = 2tan 20 + tan 215
QED
Hence Proved
Answer:
15
Step-by-step explanation:
Yes, the decimal form of
is indeed a repeating decimal. The expression is equivalent to
, which is also 1.3333333 or "1.3 bar", signifying that the 3 will repeat infinitely.
Sin^2(x), it’s a sin graph with all positive values which could indicate that it’s squared