Sulfur hexafluoride or SF6 is an inorganic, greenhouse gas. It is non-flammable, odorless, and colorless, and is an excellent insulator. It is a hypervalent octahedral molecule that has been an interesting topic of conversation among chemistry enthusiasts.
Hope this helps:)
Knowledge of chemistry allows the public to make informed decisions
Answer:
Each oxygen atom is connected to the central O atom with 2 covalent bonds.
Explanation:
Oxygen atoms are connected by two covalent bonds in the oxygen molecule from the Lewis structure, we see that the bond order for O2 is 2 (a double bond) this is clearly seen in the image attached. There are no resonance structures for the oxygen molecule since there are no partial bonds in the molecule, only the two covalent bonds present.
This structure of oxygen shown in the image is its only structure, showing the covalent bonds formed and other non bonding electrons present in the molecule. The octet rule is followed in drawing the structure. Each oxygen atom possesses an octet of electrons on its outermost shell.
Another explanation
A Lewis structure is also called a dot electron structure. A Lewis structure represents all the valence electrons on atoms in a molecule as dots. Lewis structures can be used to represent molecules in which the central atom obeys the octet rule as well as molecules whose central atom does not obey the octet rule.
Sometimes, one Lewis structure does not suffice in explaining the observed properties of a given chemical specie. In this case, we evoke the idea that the actual structure of the chemical specie lies somewhere between a limited number of bonding extremes called resonance or canonical structures.
The canonical structure of the carbonate ion as well as the lewis structure of phosphine is shown in the image attached to this answer.
Explanation:
Answer:
Explanation:
The total energy or intrinsic energy of a system is called the enthalpy. In thermochemistry, we have two types of enthalpy changes which are:
- Exothermic changes
- Endothermic changes
For the freezing of water, the enthalpy change is an exothermic one. Exothermic changes are designated as negative. In this chemical change, heat is liberated to the surroundings and this leaves the environment at a much higher temperature. In freezing, the enviroment gains more heat as the material begins to cool to lower temperature.
Entropy is the degree of randomness or disorderliness of a system. When a phase change occurs from liquid to solid, freezing takes place. Such a change increases the orderliness of a system and entropy diminishes. Here, entropy is negative.
The free energy is a measure of the energy a system that does useful work. Free energy depends on enthalpy, entropy and temperature of a system. For phase changes such as freezing of water, the value of free energy change is 0.
For this process, an increases in temperature makes it non-spontaneous. Increasing temperature would alter the course of the reaction and makes it exothermic. For entropy, increasing temperature would increase entropy and therefore, the reaction would not be feasible.
Temperature would mostly affect the free energy. An increase in temperature would increase the value of entropy change and the reaction would not be spontaneous. With falling temperature value, the reaction becomes more spontaneous and favored.