Answer:
Displacement of Mr. Llama: Option D. 0 miles.
Explanation:
The magnitude of the displacement of an object is equal to the distance between its final position and its initial position. In other words, as long as the initial and final positions of the object stay unchanged, the path that this object took will not affect its displacement.
For Mr. Llama:
- Final position: Mr. Llama's house;
- Initial position: Mr. Llama's house.
The distance between the final and initial position of Mr. Llama is equal to zero. As a result, the magnitude of Mr. Llama's displacement in the entire process will also be equal to zero.
Answer:
columns are converted into rows , and rows are converted into columns
Answer:it is a
Explanation hope this helps .
An object distance is
presented as s = 5f and we know that the mirror equation relates the image
distance to the object distance and the focal length.
The mirror equation is
1/f = 1/s + 1/s’ where the variable f stands for
the focal length of the mirror. Variable (s)
represents the distance between the mirror surface and the object and the
variable <span>(s’) represents the distance between the mirror surface and
the image. </span>
In addition, a concave mirror
will have a positive focal length (f) and a convex mirror will have a negative
focal length (f).
Now, we then have 1/f = 1/5f
+ 1/s’ which is s’ = 5f/4
Then we get the magnification
ratio that expresses the size or amount of magnification or reduction of the
object or image and to get the magnification, we use this equation: M= s’/s
M= 5f/4x5f
s’ = 1/4s
Therefore, the image height
is one fourth of the object height