A, speed = 70 km/h x (17026/79) =15086 km/h b, v=u +at v=0, a=-0.5 g = -4.9 m/s^2 u=19.4 m/s t = 3.96 s c, v^2 = u^2 + 2 as as above, 19.4^2 = 2 *0.5 *g *s s = 19.4^2/9.8 = 38.6m
Hope it helps :)
Since the slowest instruction in the SCA executes in 12.5 ns, the maximum system clock frequency is 80 MHz
To answer the question, we need to know what frequency is.
<h3>What is frequency?</h3>
Frequency is the number of oscillations per second of a wave.
It is given by f = 1/T where T = period of wave
Now, given that the slowest instruction in the SCA executes in t = 12.5 ns, we need to calculate maximum system clock frequency, f.
<h3>What is the maximum system clock frequency?</h3>
So, f = 1/t
= 1/12.5 ns
= 1/(12.5 × 10⁻⁹ s)
= 1/12.5 × 10⁹ Hz
= 0.08 × 10⁹ Hz
= 80 × 10⁻³ × 10⁹ Hz
= 80 × 10⁶ Hz
= 80 MHz
So, the maximum system clock frequency is 80 MHz
Learn more about maximum system clock frequency here:
brainly.com/question/14636488
#SPJ11
Answer:
7m
Explanation:
5+2=7 and then I added in the "m" and got 7m, so presumably g=7m.
Answer:
0.09 s
Explanation:
From the second equation of motion,

Here, u is the initial velocity, a is the acceleration due to gravity, t is time taken, and S is the total displacement or distance.
From the given problem,
initial velocity is zero for both the case.
And the distance of twin tower of malaysia is, 
And the distance of Sears tower of Chicago is, 
Now,rearrange the distance equation for t.

So time difference.

Therefore, the difference in time, object will reach the ground is 0.09 s