The people are using a lot of electricity blow drying to many peoples hair so i would make a schedule so it dosent get to busy with costumers
Answer:
6.88 mA
Explanation:
Given:
Resistance, R = 594 Ω
Capacitance = 1.3 μF
emf, V = 6.53 V
Time, t = 1 time constant
Now,
The initial current, I₀ = 
or
I₀ = 
or
I₀ = 0.0109 A
also,
I = ![I_0[1-e^{-\frac{t}{\tau}}]](https://tex.z-dn.net/?f=I_0%5B1-e%5E%7B-%5Cfrac%7Bt%7D%7B%5Ctau%7D%7D%5D)
here,
τ = time constant
e = 2.717
on substituting the respective values, we get
I = ![0.0109[1-e^{-\frac{\tau}{\tau}}]](https://tex.z-dn.net/?f=0.0109%5B1-e%5E%7B-%5Cfrac%7B%5Ctau%7D%7B%5Ctau%7D%7D%5D)
or
I =
or
I = 0.00688 A
or
I = 6.88 mA
Answer:
Capacitive reactance is 132.6 Ω.
Explanation:
It is given that,
Capacitance, 
Voltage source, V = 20 volt
Frequency of source, f = 60 Hz
We need to find the capacitive reactance. It is defined as the reactance for a capacitor. It is given by :



So, the capacitive reactance of the capacitor is 132.6 Ω. Hence, this is the required solution.