Answer:
gfhvgtrtjrgvfjrrgfrfftuyrisnhdvfcgfridkjhsybvvtfvjfcgvwjfccegvghcvgrcgvrekgvrkgvkvvrvkvfgkerruuyti
<em><u>Invertebrat</u></em><em><u>e</u></em><em><u> </u></em><em><u>means</u></em><em><u> </u></em><em><u>those</u></em><em><u> </u></em><em><u>organism</u></em><em><u> </u></em><em><u>which</u></em><em><u> </u></em><em><u>doesnot</u></em><em><u> </u></em><em><u>have</u></em><em><u> </u></em><em><u>backbone</u></em><em><u> </u></em><em><u>in</u></em><em><u> </u></em><em><u>their</u></em><em><u> </u></em><em><u>body</u></em><em><u> </u></em><em><u>.</u></em><em><u>Some</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>t</u></em><em><u>he</u></em><em><u> </u></em><em><u>examples</u></em><em><u> </u></em><em><u>are</u></em><em><u>:</u></em>
<em><u>1</u></em><em><u>.</u></em><em><u>S</u></em><em><u>p</u></em><em><u>i</u></em><em><u>d</u></em><em><u>e</u></em><em><u>r</u></em>
<em><u>2</u></em><em><u>.</u></em><em><u>e</u></em><em><u>a</u></em><em><u>r</u></em><em><u>t</u></em><em><u>h</u></em><em><u>w</u></em><em><u>o</u></em><em><u>r</u></em><em><u>m</u></em>
<em><u>3</u></em><em><u>.</u></em><em><u>S</u></em><em><u>t</u></em><em><u>a</u></em><em><u>r</u></em><em><u>f</u></em><em><u>i</u></em><em><u>s</u></em><em><u>h</u></em>
<em><u>4</u></em><em><u>.</u></em><em><u>S</u></em><em><u>e</u></em><em><u>a</u></em><em><u> </u></em><em><u>urchins</u></em><em><u>.</u></em>
<em><u>hope</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>will</u></em><em><u> </u></em><em><u>help</u></em><em><u> </u></em><em><u>u</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>lot</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
The Earth’s average orbital speed expressed in kilometers per hours is 107225.5 Km/hr and the mass of the sun is 2.58 x
Kg
<h3>
Relationship between Linear and angular speed</h3>
Linear speed is the product of angular speed and the maximum displacement of the particle. That is,
V = Wr
Where
Given that the earth orbits the sun at an average circular radius of about 149.60 million kilometers every 365.26 Earth days.
a) To determine the Earth’s average orbital speed, we will make use of the below formula to calculate angular speed
W = 2
/T
W = (2 x 3.143) / (365.26 x 24)
W = 6.283 / 876624
W = 7.2 x
Rad/hr
The Earth’s average orbital speed V = Wr
V = 7.2 x
x 149.6 x 
V = 107225.5 kilometers per hours.
b) Based on the information given in this question, to calculate the approximate mass of the Sun, we will use Kepler's 3rd law
M = (4
) / G
M = (4 x 9.8696 x 3.35 x
) / (6.67 x
x 7.68 x
<em>)</em>
<em>M = 1.32 x </em>
/ 51.226
M = 2.58 x
Kg
Therefore, the Earth’s average orbital speed expressed in kilometers per hours is 107225.5 Km/hr and the mass of the sun is 2.58 x
Kg
Learn more about Orbital Speed here: brainly.com/question/22247460
#SPJ1
Answer:
Explanation:
i really dont know im a 4th grader
Let <em>F</em> be the magnitude of the force applied to the cart, <em>m</em> the mass of the cart, and <em>a</em> the acceleration it undergoes. After time <em>t</em>, the cart accelerates from rest <em>v</em>₀ = 0 to a final velocity <em>v</em>. By Newton's second law, the first push applies an acceleration of
<em>F</em> = <em>m a</em> → <em>a</em> = <em>F </em>/ <em>m</em>
so that the cart's final speed is
<em>v</em> = <em>v</em>₀ + <em>a</em> <em>t</em>
<em>v</em> = (<em>F</em> / <em>m</em>) <em>t</em>
<em />
If we force is halved, so is the accleration:
<em>a</em> = <em>F</em> / <em>m</em> → <em>a</em>/2 = <em>F</em> / (2<em>m</em>)
So, in order to get the cart up to the same speed <em>v</em> as before, you need to double the time interval <em>t</em> to 2<em>t</em>, since that would give
(<em>F</em> / (2<em>m</em>)) (2<em>t</em>) = (<em>F</em> / <em>m</em>) <em>t</em> = <em>v</em>