Answer:
A is the closest thing. You change the composition of the steak. You don't in any of the others.
Explanation:
Usually when you cook something, you are doing something to the composition of the object being cooked. A steak might not be obvious, but boiling an egg should be.
Chopping a tree is something physical. You are removing mass in such a way that the tree will fall. There's nothing chemical about that.
Heating a cup of tea looks like it might be chemical. After all steam is sometimes given off which looks like it is chemical. It's not. The water in the tea is just changing phase.
Drying clothes in a dryer. Again, this looks like something might have changed. After all the mass of the clothes just became less. But all you are doing is separating two masses (leaving one of them behind).
Answer:
an increase in 1-butene was observed when t-butoxide was used
Explanation:
When a base reacts with an alkyl halide, an elimination product is formed. This reaction is an E2 reaction.
Here we are to compare the reaction of two different bases with one substrate; 2-bromobutane. Both reactions occur by the E2 mechanism but follow different transition states due to the size of the base.
The Saytzeff product, 2-butene, is obtained when the methoxide is used while the non Saytzeff product, 1-butene, is obtained when t-butoxide is used.
The Saytzeff rule is reliable in predicting the major products of simple elimination reactions of alkyl halides given the fact that a small/strong bases is used for the elimination reaction. Therefore hydroxide, methoxide and ethoxide bases give similar results for the same alkyl halide substrate. Bulky bases such as tert-butoxide tend to yield a higher percentage of the non Saytzeff product and this is usually attributed to steric hindrance.