Answer:
helium
Explanation:
helium has the highest ionization energy level
1) is chemical Bonds
3) Conservation of mass
5) compound
hope i helped on the ones i could answer
Answer:
I would expect to extract the acetic acid.
Explanation:
In the first step, since we are adding a concentrated acid,<u> it will react with the bases present in the mixture (diethylamine and ammonia) </u><u>forming salts</u><u>, </u><u>which are soluble in water</u>. Therefore, after draining the aqueous layer, we will have phenol and acetic acid left in the organic layer.
In the second step, we are adding a diluted base, so it will react with a strong acid. This compound is acetic acid, and its salt will be present in the aqueous layer. Phenol will be left on the organic layer.
Answer:
D =Average atomic mass = 10.801 amu.
5) True
Explanation:
Abundance of B¹⁰= 19.9%
Abundance of B¹¹ = 80.1%
Atomic mass of B¹⁰ = 10 amu
Atomic mass of B¹¹ = 11 amu
Average atomic mass = ?
Solution:
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass = (10×19.9)+(11×80.1) /100
Average atomic mass = 199 + 881.1 / 100
Average atomic mass = 1080.1 / 100
Average atomic mass = 10.801 amu.
2)A chemical reaction is one in which a new elements is created
True
False
Answer:
In chemical reaction new substances are created.
For example:
Photosynthesis:
It is the process in which in the presence of sun light and chlorophyll by using carbon dioxide and water plants produce the oxygen and glucose.
Carbon dioxide + water + energy → glucose + oxygen
water is supplied through the roots, carbon dioxide collected through stomata and sun light is capture by chloroplast.
Chemical equation:
6H₂O + 6CO₂ + energy → C₆H₁₂O₆ + 6O₂
it is known from balanced chemical equation that 6 moles of carbon dioxide react with the six moles of water and created one mole of glucose and six mole of oxygen.
<span>Avogadro's number
represents the number of units in one mole of any substance. This has the value
of 6.022 x 10^23 units / mole. This number can be used to convert the number of
atoms or molecules into number of moles. We do as follows:
4.50 mol Fe ( 6.022x10^23 atoms / 1 mol Fe ) = 2.71x10^24 atoms Fe present </span>