1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ddd [48]
2 years ago
5

Please help!!!!!

Mathematics
2 answers:
sergeinik [125]2 years ago
8 0

-8.1

Step-by-step explanation:

\frac{ - 4}{9} x + 2.4 = 6

<em>Times </em><em>all </em><em>by </em><em>9</em><em> </em><em>to </em><em>get </em><em>rid </em><em>of </em><em>fraction</em>

<em>- 4x + 21.6 = 54</em>

<em>Take </em><em>2</em><em>1</em><em>.</em><em>6</em><em> </em><em>away</em><em> </em><em>from</em><em> </em><em>both</em><em> </em><em>sides</em>

<em>- 4x = 32.4</em>

<em>Divide</em><em> </em><em>by </em><em>-</em><em>4</em>

<em>x =  - 8.1</em>

strojnjashka [21]2 years ago
4 0

-8.1

Step-by-step explanation:

You might be interested in
<img src="https://tex.z-dn.net/?f=%24a%2Ba%20r%2Ba%20r%5E%7B2%7D%2B%5Cldots%20%5Cinfty%3D15%24%24a%5E%7B2%7D%2B%28a%20r%29%5E%7B
riadik2000 [5.3K]

Let

S_n = \displaystyle \sum_{k=0}^n r^k = 1 + r + r^2 + \cdots + r^n

where we assume |r| < 1. Multiplying on both sides by r gives

r S_n = \displaystyle \sum_{k=0}^n r^{k+1} = r + r^2 + r^3 + \cdots + r^{n+1}

and subtracting this from S_n gives

(1 - r) S_n = 1 - r^{n+1} \implies S_n = \dfrac{1 - r^{n+1}}{1 - r}

As n → ∞, the exponential term will converge to 0, and the partial sums S_n will converge to

\displaystyle \lim_{n\to\infty} S_n = \dfrac1{1-r}

Now, we're given

a + ar + ar^2 + \cdots = 15 \implies 1 + r + r^2 + \cdots = \dfrac{15}a

a^2 + a^2r^2 + a^2r^4 + \cdots = 150 \implies 1 + r^2 + r^4 + \cdots = \dfrac{150}{a^2}

We must have |r| < 1 since both sums converge, so

\dfrac{15}a = \dfrac1{1-r}

\dfrac{150}{a^2} = \dfrac1{1-r^2}

Solving for r by substitution, we have

\dfrac{15}a = \dfrac1{1-r} \implies a = 15(1-r)

\dfrac{150}{225(1-r)^2} = \dfrac1{1-r^2}

Recalling the difference of squares identity, we have

\dfrac2{3(1-r)^2} = \dfrac1{(1-r)(1+r)}

We've already confirmed r ≠ 1, so we can simplify this to

\dfrac2{3(1-r)} = \dfrac1{1+r} \implies \dfrac{1-r}{1+r} = \dfrac23 \implies r = \dfrac15

It follows that

\dfrac a{1-r} = \dfrac a{1-\frac15} = 15 \implies a = 12

and so the sum we want is

ar^3 + ar^4 + ar^6 + \cdots = 15 - a - ar - ar^2 = \boxed{\dfrac3{25}}

which doesn't appear to be either of the given answer choices. Are you sure there isn't a typo somewhere?

7 0
2 years ago
The heights of men in a certain population follow a normal distribution with mean 69.7 inches and standard deviation 2.8 inches.
Mama L [17]

Answer:

a) P(Y > 76) = 0.0122

b) i) P(both of them will be more than 76 inches tall) = 0.00015

   ii) P(Y > 76) = 0.0007

Step-by-step explanation:

Given - The heights of men in a certain population follow a normal distribution with mean 69.7 inches and standard deviation 2.8 inches.

To find - (a) If a man is chosen at random from the population, find

                    the probability that he will be more than 76 inches tall.

              (b) If two men are chosen at random from the population, find

                    the probability that

                    (i) both of them will be more than 76 inches tall;

                    (ii) their mean height will be more than 76 inches.

Proof -

a)

P(Y > 76) = P(Y - mean > 76 - mean)

                 = P( \frac{( Y- mean)}{S.D}) > \frac{( 76- mean)}{S.D})

                 = P(Z >  \frac{( 76- mean)}{S.D})

                 = P(Z > \frac{76 - 69.7}{2.8})

                 = P(Z > 2.25)

                 = 1 - P(Z  ≤ 2.25)

                 = 0.0122

⇒P(Y > 76) = 0.0122

b)

(i)

P(both of them will be more than 76 inches tall) = (0.0122)²

                                                                           = 0.00015

⇒P(both of them will be more than 76 inches tall) = 0.00015

(ii)

Given that,

Mean = 69.7,

\frac{S.D}{\sqrt{N} } = 1.979899,

Now,

P(Y > 76) = P(Y - mean > 76 - mean)

                 = P( \frac{( Y- mean)}{\frac{S.D}{\sqrt{N} } })) > \frac{( 76- mean)}{\frac{S.D}{\sqrt{N} } })

                 = P(Z > \frac{( 76- mean)}{\frac{S.D}{\sqrt{N} } })

                 = P(Z > \frac{( 76- 69.7)}{1.979899 }))

                 = P(Z > 3.182)

                 = 1 - P(Z ≤ 3.182)

                 = 0.0007

⇒P(Y > 76) = 0.0007

6 0
3 years ago
Giving brainliest to best answer
Sergio [31]

Answer:

One unit to the right.

Step-by-step explanation:

I entered both equations into desmos and rootx - 1 is one unit to the right.

Desmos is a great tool for graphing

6 0
3 years ago
Which one is farther right on the number line -1.75 or -3.25
Neko [114]
-1.75, negative numbers go on the left of the negative sign going up (down) and since -1.75 is actually a greater number our answer is -1.75
3 0
3 years ago
What is the factored form of x^2y^3 -2y^3 - 2x^2 +4
Law Incorporation [45]

(-x^2+4)

x^2y^3-2y^3-2x^2+4=x^2-2x^2+4=

(-x^2+4)

8 0
3 years ago
Other questions:
  • Name all the perfect squares between 1 and 144
    5·2 answers
  • What is 1/7 times 2/3?
    7·2 answers
  • What’s % of 500 = 90
    9·1 answer
  • A 15- ounce box contains 0.425 kg of cereal. how many grams of cereal are in the box​
    13·1 answer
  • The members of an organization are 10 men and 11 women
    9·2 answers
  • What would happen if osteocytes were damaged
    6·1 answer
  • Find the 12th partial sum of <br>∞<br>∑  (-2i-10)<br>i-1
    13·2 answers
  • A bicycle is on sale at a 15% discount. The sale price is $680. What was the original price?
    9·2 answers
  • Help i’m begging plsss
    9·1 answer
  • Solve the inequality -5(x-7)&lt;15 algebraically for x.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!