Explanation:
Breathing, is necessary as it repleneshes oxygen in cells; it also expels CO2 and water vapor, which are waste products from cellular respiration.
Further Explanation:
In all eukaryotic cells mitochondria are small cellular organelles bound by membranes, these make most of the chemical energy required for powering the biochemical reactions within the cell. This chemical energy is stored within the molecule ATP which is produced. Respiration in the mitochondria utilizes oxygen for the production of ATP in the Krebs’ or Citric acid cycle via the oxidization of pyruvate (through the process of glycolysis in the cytoplasm).
overall: C6H12O6 (glucose) + 6 O2 → 6 CO2 + 6 H2O + ≈38 ATP
Oxidative phosphorylation describes a process in which the NADH and FADH2 made in previous steps of respiration process give up electrons in the electron transport chain these are converted it to their previous forms, NADH+ and FAD. Electrons continue to move down the chain the energy they release is used in pumping protons out of the matrix of the mitochondria.
This forms a gradient where there is a differential in the number of protons on either side of the membrane the protons flow or re-enter the matrix through the enzyme ATP synthase, which makes the energy storage molecules of ATP from the reduction of ADP. At the end of the electron transport, three molecules of oxygen accept electrons and protons to form molecules of water. For a breakdown of each:
- Glycolysis: occurs in the cytoplasm 2 molecules of ATP are used to cleave glucose into 2 pyruvates, 4 ATP and 2 electron carrying NADH molecules.
- The Kreb's cycle: in the mitochondrial matrix- 6 molecules of CO2 are produced by combining oxygen and the carbon within pyruvate, 2 ATP oxygen molecules, 8 NADH and 2 FADH2.
- The electron transport chain, ETC: in the inner mitochondrial membrane, 34 ATP, electrons combine with H+ split from 10 NADH, 4 FADH2, renewing the number of electron acceptors and 3 oxygen; this forms 6 H2O, 10 NAD+, 4 FAD.
Learn more about cellular life at brainly.com/question/11259903
Learn more about cellular respiration at brainly.com/question/11203046
#LearnWithBrainly
DNA contains the instructions needed for an organism to develop, survive and reproduce. To carry out these functions, DNA sequences must be converted into messages that can be used to produce proteins, which are the complex molecules that do most of the work in our bodies.
Fish and other aquatic life may have a harder time finding food as a result of algae blooms, and whole populations may move away or even perish as a result.
Thick, green muck produced by harmful algal blooms has an adverse effect on clear water, leisure activities, companies, and property values.
- The process of eutrophication, which happens when the environment becomes enriched with nutrients, increases the quantity of plant and algae development in estuaries and coastal waters, is what causes harmful algal blooms, dead zones, and fish kills.
- The excessive growth of algae in water bodies is referred to as eutrophication.
- Algal blooms are what are known as these phytoplankton masses or blooms.
- Blue-green algae blooms (also known as cyanobacteria, contaminated water supplies, and hypoxia are some of the known effects of cultural eutrophication.
Learn more about algae here:
brainly.com/question/11569246
#SPJ4