Answer:
Deletion mutation usually takes place due to the errors in the process of DNA replication . DNA polymerase slips off on the template strand due to which that part of the DNA is not coded in the daughter strand.
It can skip from one nucleotide (point mutation) to an entire gene. Point deletion can result in frame-shift mutation if it takes place in the beginning or middle of the gene. However, if it takes place at the end of the gene then it may cause no harm.
For example, let us assume the original sequence of DNA as ATG-AGT-CGT-ATA-TAA. It will result in the formation of methionine, serine, arginine, isoleucine, and STOP codon.
Point deletion at the end of the gene results in ATG-AGC-GTA-TAT-AA sequence. Now it will code for methionine, serine, valine, and tyrosine as AA will not code for anything. Hence, the sequence of the protein remains the same.
Hence, if deletion mutation takes place at the last or stop codon of the gene then it will cause no harm or change in the protein sequence. However, if it takes place before that then it may result in frame-shift mutation and thus a mutated protein.
This is an experiment where the researcher manipulates one variable, and control/randomizes the rest of the variables. It has a control group, the subjects have been randomly assigned between the groups, and the researcher only tests one effect at a time.
Answer:
Cell division is simpler in prokaryotes than eukaryotes because prokaryotic cells themselves are simpler. Prokaryotic cells have a single circular chromosome, no nucleus, and few other cell structures. Eukaryotic cells, in contrast, have multiple chromosomes contained within a nucleus, and many other organelles.