1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aev [14]
2 years ago
9

If you walk from the train station to the

Mathematics
1 answer:
Ray Of Light [21]2 years ago
7 0

Since the miles are not given, I am writing the steps for you so that you can solve it on your own!!

<h3>Steps:</h3>

  • Take the miles from train station to library then library to park and then park to train station.
  • Add all the distances
  • And there you go, You have the total distance!!
You might be interested in
A language arts test is worth 100 points. There is a total of 26 questions. There are spelling word questions thatare worth 2 po
Ostrovityanka [42]

Answer:

Spelling word questions = 10

vocabulary word questions = 16

Step-by-step explanation:

Let

Spelling word questions = x

vocabulary word questions = y

Total points = 100

Total questions = 26

x + y = 26 (1)

2x + 5y = 100 (2)

From (1)

x = 26 - y

Substitute x = 26 - y into

2x + 5y = 100

2(26 - y) + 5y = 100

52 - 2y + 5y = 100

- 2y + 5y = 100 - 52

3y = 48

y = 48 / 3

= 16

y = 16

Substitute y = 16 into

x + y = 26

x + 16 = 26

x = 26 - 16

= 10

x = 10

Spelling word questions = 10

vocabulary word questions = 16

7 0
3 years ago
HELP AS SOON AS POSSIBLE NEEDS ANSWERS ASAP
likoan [24]

Answer:

C. The mean will increase and ty e median will remain the same.

6 0
3 years ago
Show all work to identify the asymptotes and zero of the function f(x) = 6x / x^2 - 36
eduard

Answer:

Zero of the function f(x) is at x = 0

Vertical Asymptotes at x = ±6

Horizontal Asymptotes at y = 0

Step-by-step explanation:

<h3>Vertical Asymptotes </h3>

For a given function f(x):

Vertical Asymptotes are obtained at those values of x, where the function f(x) tends to infinity, I.e.,

<em>When</em><em> </em><em>x</em><em> </em><em>approaches</em><em> </em><em>some</em><em> </em><em>constant</em><em> </em><em>value</em><em> </em><em>b</em><em>u</em><em>t</em><em> </em><em>th</em><em>e</em><em> </em><em>curve</em><em> </em><em>moves</em><em> </em><em>towards</em><em> </em><em>infinity</em><em>.</em><em> </em>

  • If f(x) is a fraction, it'll tend to infinity when it's denominator becomes zero.

Vertical Asymptotes of the given function can be obtained by walking thru the following steps:

<u>Step I</u>

(Factorise the numerator and denominator)

\mathsf{ f(x) = \frac{6x}{ {x}^{2} - 36 } }

<em>x</em><em>²</em><em> </em><em>-</em><em> </em><em>36</em><em> </em><em>can</em><em> </em><em>be</em><em> </em><em>facto</em><em>rised</em><em> </em><em>into</em><em> </em><em>(</em><em>x</em><em> </em><em>+</em><em> </em><em>6</em><em>)</em><em>(</em><em>x</em><em> </em><em>-</em><em> </em><em>6</em><em>)</em>

<em>and</em><em>,</em><em> </em><em>ofcourse</em><em>,</em><em> </em><em>we</em><em> </em><em>can</em><em> </em><em>write</em><em> </em><em>6</em><em>x</em><em> </em><em>as</em><em> </em><em>6</em><em>(</em><em>x</em><em> </em><em>-</em><em> </em><em>0</em><em>)</em><em> </em>

\mathsf{ f(x) = \frac{6(x - 0)}{ (x + 6)(x - 6) } }

<u>Step</u><u> </u><u>II</u>

(Reduce the fraction to its simplest form by canceling out the common factors)

<em>There aren't any common factors in the numerator and denominator in this case.</em>

<u>Step</u><u> </u><u>III</u>

(Look for the values of x which cause the denominator to be zero)

<em>If</em><em> </em><em>we</em><em> </em><em>put</em><em> </em>x = 6

<em>denominator</em><em> </em><em>becomes</em><em> </em><em>0</em>

Also,

<em>If</em><em> </em><em>we</em><em> </em><em>substitute</em><em> </em><em>x</em><em> </em><em>with</em><em> </em> -6

<em>denominator</em><em> </em><em>becomes</em><em> </em><em>0</em><em>.</em><em> </em>

The two values of x indicate the two Vertical Asymptotes of the function f(x).

Therefore,

<u>Vertical</u><u> </u><u>Asymptotes</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>given</u><u> </u><u>function</u><u> </u><u>f</u><u>(</u><u>x</u><u>)</u><u> </u><u>are</u><u>:</u>

\boxed{ \mathsf{x =  \pm6}}

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

<h3 /><h3>Horizontal Asymptotes:</h3>

Horizontal Asymptotes are obtained When x tends to infinity and y approaches some constant value.

I'll be using the concept of limits for this.

\mathsf{y = \frac{6x}{ {x}^{2} - 36 }  }

<em>dividing</em><em> </em><em>and</em><em> </em><em>multiplying</em><em> </em><em>by</em><em> </em><em>x</em><em>²</em><em> </em><em>(</em><em>Yep</em><em>!</em><em> </em><em>so</em><em> </em><em>if</em><em> </em><em>x</em><em> </em><em>becomes</em><em> </em><em>infinity</em><em> </em><em>1</em><em>/</em><em> </em><em>x</em><em> </em><em>and</em><em> </em><em>1</em><em>/</em><em> </em><em>x</em><em>²</em><em> </em><em>all</em><em> </em><em>such</em><em> </em><em>terms</em><em> </em><em>become</em><em> </em><em>0</em><em>,</em><em> </em><em>'</em><em>cause</em><em> </em><em>1</em><em>/</em><em> </em><em>∞</em><em> </em><em>is</em><em> </em><em>0</em><em>)</em><em> </em>

\implies \mathsf{y = lim_{x \rightarrow \infty }( \frac{ \frac{6x}{ {x}^{2} } }{  \frac{ {x}^{2} - 36 }{ {x}^{2} }  } ) }

\implies \mathsf{y = lim_{x \rightarrow \infty }( \frac{ \frac{6}{ x } }{  1-  \frac{36 }{ {x}^{2} }  } ) }

Substitute x with ∞, you get zero/ 1

\implies  \boxed{\mathsf{y = 0}}

So, the horizontal Asymptote of the function is y = 0, that is the x axis

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

<h3>Zeroes of a function:</h3>

The values of x that reduces f(x) to zero are called the zeroes of f(x).

Here, only x = 0 acts as the zero of the function.

[NOTE:

  • For finding <u>Vertical Asymptotes</u><u>,</u>Equate the denominator to 0. And
  • For finding <u>Zeroes</u><u>,</u> Equate the numerator to 0]

__________________

[That's what it's graph looks like. ]

3 0
3 years ago
The sum of twice a number and 13 is 75
sveta [45]

Sum means add. Then we get twice. This means to multiply by 2. Twice a number means we have 2x. And is what we need to add to that 2x, so it is 2x + 13. Is means equals, so answer is 2x + 13 = 75.

7 0
4 years ago
The sum of 3y and 5 is 47
Musya8 [376]
3y + 5 = 47

Subtract the 5 so you have 3y on the left side and move it to the other side.

Now it’s:

3y = 47-5

3y = 42

Now, divide 3y by 3, so we get y by itself. Do the same thing to the other side.

y = 14
8 0
3 years ago
Other questions:
  • I need help with both preferably with the Pascal’s Triangle.
    15·2 answers
  • The table shows employment status for 1600 adults from five countries. Are the events S = "is Swedish" and E = "is employed"
    12·1 answer
  • Lars wants to know if warming up will help runners sprint faster. Twenty-four track and field athletes volunteered to participat
    11·2 answers
  • Which point do all exponential functions of the form y = ax pass through? A) (0, 1) B) (1, 0) C) (0, 0) D) (−1, 0)
    7·2 answers
  • X+12=15 what does X equal. EXPLAIN!!
    13·2 answers
  • $54 is 60% of what amount?​
    7·1 answer
  • Mega question with brainliest
    10·2 answers
  • calculate the actual sales since the sales tax were rung up together. assume sales tax of 6% and total sales of $27,000. What is
    8·2 answers
  • Need help with slope practice
    10·2 answers
  • Cross-multiply to test if the problem is proportion. Choose Yes or No<br><br><br>1.1/0.66 = 20/12
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!