B. As particles travel in straight lines, their paths sometimes meet, and then they bounce apart with no gain or loss of energy.
Explanation:
The best statement that describes the collision of gas particles according to the kinetic-molecular theory is that as particles travel in straight lines, their paths sometimes meet and then they bounce apart with no gain or loss of energy.
- The kinetic molecular theory is used to explain the forces between molecules and their energy.
One of the postulate suggests that, when molecules collide with each other, or with the wall of the container, there is no loss or gain of energy.
- Molecules are independent of one another and that forces of attraction and repulsion between molecules are negligible.
Learn more:
Particle collision brainly.com/question/6439920
#learnwithBrainly
A and C are incorrect because they are not complete transfer of valence electrons. Ionic bonds best to form a neutral molecule
The answer is (2) equal to. In redox reactions, you can't just lose electrons somewhere. If an electrons is lost by one, it must be gained by another. Hence, the importance of balancing redox reactions.
Answer:- Third choice is correct, 17.6 moles
Solution:- The given balanced equation is:
Al_2(SO_4)_3+6KOH\rightarrow 2Al(OH)_3+3K_2SO_4
We are asked to calculate the moles of potassium hydroxide needed to completely react with 2.94 moles of aluminium sulfate.
From the balanced equation, there is 1:6 mol ratio between aluminium sulfate and potassium hydroxide.
It is a simple mole to mole conversion problem. We solve it using dimensional set up as:
2.94molAl_2(SO_4)_3(\frac{6molKOH}{1molAl_2(SO_4)_3})
= 17.6 mol KOH
So, Third choice is correct, 17.6 moles of potassium hydroxide are required to react with 2.94 moles of aluminium sulfate.