Answer:
Because the electrons in this ionic compound arent free to move and so cannot carry charge. For an iconic compound to conduct electricity it must be a liquid, either in a molten form or dissolved in water.
Explanation:
Is this clear?
Answer:
2,2,3,3-tetrapropyloxirane
Explanation:
In this case, we have to know first the alkene that will react with the peroxyacid. So:
<u>What do we know about the unknown alkene? </u>
We know the product of the ozonolysis reaction (see figure 1). This reaction is an <u>oxidative rupture reaction</u>. Therefore, the double bond will be broken and we have to replace the carbons on each side of the double bond by oxygens. If
is the only product we will have a symmetric molecule in this case 4,5-dipropyloct-4-ene.
<u>What is the product with the peroxyacid?</u>
This compound in the presence of alkenes will produce <u>peroxides.</u> Therefore we have to put a peroxide group in the carbons where the double bond was placed. So, we will have as product <u>2,2,3,3-tetrapropyloxirane.</u> (see figure 2)
I believe a solution of Sn(NO3)2 can not be stored in an aluminium container because Aluminium is higher in the reactivity series compared to Tin (Sn). Therefore, Aluminium is more reactive than Tin and hence aluminium will displace Tin from its salt forming Aluminium nitrate and Tin metal. Thus storing Tin nitrate in an aluminium container will cause the "eating away' of the container.
Answer:
1.43 M
Explanation:
We'll begin by calculating the number of mole of the solid. This can be obtained as follow:
Mass of solid = 8.60 g
Molar mass of solid = 21.50 g/mol
Mole of solid =?
Mole = mass / molar mass
Mole of solid = 8.60 / 21.50
Mole of solid = 0.4 mole
Next, we shall convert 280 mL to litre (L). This can be obtained as follow:
1000 mL = 1 L
Therefore,
280 mL = 280 mL × 1 L / 1000 mL
280 mL = 0.28 L
Thus, 280 mL is equivalent to 0.28 L.
Finally, we shall determine the molarity of the solution. This can be obtained as illustrated below:
Mole of solid = 0.4 mole
Volume = 0.28 L
Molarity =?
Molarity = mole / Volume
Molarity = 0.4 / 0.28
Molarity = 1.43 M
Thus, the molarity of the solution is 1.43 M.