ANSWER:
[a] A linear regression line has an equation of the form Y = a + bX, where X is the explanatory variable and Y is the dependent variable. The slope of the line is b, and a is the intercept (the value of y when x = 0).
[b] In the equation of a straight line (when the equation is written as “y = mx + b”), the slope is the number “m” that is multiplied on the x, and “b” is the y-intercept (that is, the point where the line crosses the vertical y-axis). This useful form of the line equation is sensibly named the “Slope-intercepts form”.
NOTE: See picture attached.
Answer:
37. {-1, -1}.
Step-by-step explanation:
I'll solve the first one . The other can be solved in a similar way. We can use the method of elimination.
x1 - x2 = 0
3x1 - 2x2 = -1
We can multiply the first equation by -2. We then have an equation containing + 2x2 so when we add this to the second equation the 2x2 will be eliminated
So the first equation becomes:
-2x1 + 2x2 = 0 Bring down the second equation:
3x1 - 2x2 = -1 Now adding, we get:
x1 + 0 = -1
so x1 = -1.
Now we substitute this value of x1 in the original first equation:
-1 - x2 = 0
-1 = x2
x2 = -1.
So the solution set is {-1, -1}.
If there are more than 2 equations you can use a combination of substitutions and eliminations.
Answer:
C = 64 B = 55
Step-by-step explanation:
Might be wrong but give it a try
Divide 294 by 14 and you get 21. I hope it helps and that’s the answer. :)
Answer:
x = 2
Step-by-step explanation:
Add 2x from each side giving you
7x - 3 = 11
Add 3 to each side
7x = 14
Divide by 7
x = 2